Mathematical models of polymer-dentin physicochemical interactions and their biological effects

Authors

  • Paula Alejandra Baldión Department of Oral Health. Universidad Nacional de Colombia, Department of Mechanical and Mechatronic Engineering. Universidad Nacional de Colombia
  • Carlos Julio Cortés Department of Mechanical and Mechatronic Engineering. Universidad Nacional de Colombia

Keywords:

Adhesive monomers, Interface, Dentin, Wettability, Contact degree, Surface energy

Abstract

Dental adhesion is the result of a physicochemical interaction between tooth structure and the adhesive polymeric restorative material. Adhesion involves molecular interactions at the interface between these constituents. Furthermore, mechanical interlocking is a common type of adhesion important in dental materials. This type of bonding involves the penetration of the adhesive into the dental surface and requires different energetic considerations for an optimal interface. An adequate infiltration of adhesive monomers into demineralized dentin depends on several factors that are determined by the atoms on the surface of the structures and the effects of surface energy on the thermodynamic work of adhesion. The polarity, solubility and viscosity of the adhesive system and the surface energy and moisture of dentin tissue are key factors that contribute to adhesion energy. The main goal of dental material adhesion is to produce an interface that is strong and durable. Thus, it is important to optimize the infiltration of adhesive monomers into exposed collagen fiber networks and dentinal tubules in order to increase the strength of the Resin-dentin bonds and produce adequate dentin sealing.

References

Asmussen, E., Attal, J.P., Degrange, M., 1995. Factors affecting the adherence energy of experimental resin cements bonded to a nickel–chromium alloy. J. Dent. Res., 74, 715-20.

Asmussen, E., Hansen, E.K., Peutzfeldt, A., 1991. Influence of the solubility parameter of intermediary resin on the effectiveness of the Gluma bonding system. J. Dent. Res., 70, 1290-93.

Asmussen, E., Peutzfeldt, A., 1998. Surface energy characteristics of adhesive monomers. Dent. Mater., 14, 21-8.

Asmussen, E., Peutzfeldt, A., 2001. Influence of selected components on crosslink density in polymer structures. Eur. J. Oral. Sci., 109(4), 282-5.

Asmussen, E., Peutzfeldt, A., 2005. Resin composites: strength of the bond to dentin versus surface energy parameters. Dent. Mater., 21(11), 1039-43.

Asmussen, E., Uno, S., 1993. Solubility parameters, fractional polarities, and bond strengths of some intermediary resins used in dentistry. J. Dent. Res., 72, 558-565.

Baier, R.E., 1992. Principles of adhesion. Oper. Dent., (Suppl. 5), 1-9.

Bayne, S.C., Taylor, D.F., Zardiackas, L.D., 1992. Biomaterials science. Chapel Hill, NC: Brightstar Publishing.

Boushell, L.W., Kaku, M., Mochida, Y., Bagnell, R., Yamauchi, M., 2008. Immunohistochemical localization of matrixmetalloproteinase-2 in human coronal dentin. Arch. Oral. Biol., 53, 109-16.

Breschi, L., Mazzoni, A., Ruggeri, A., Cadenaro, M., Di Lenarda, R., De Stefano Dorigo, E., 2008. Dental adhesion review: aging and stability of the bonded interface. Dent. Mater., 24, 90-101.

Carrilho, M.R., Carvalho, R.M., de Goes, M.F., di Hipolito, V., Geraldeli, S., Tay, FR., 2007a. Chlorhexidine preserves dentin bond in vitro. J. Dent. Res., 86,90-94.

Carrilho, M.R., Tay, F.R., Sword, J., Donnelly, A.M., Agee, K.A., Nishitani, Y., 2007b. Dentin sealing provided by smear layer/smear plugs versus adhesive resins/resin tags. Eur. J. Oral. Sci., 115, 321-9.

Craig, R.G., 1997. Restorative dental materials. 10th editon. St Lois: Mosby.

Feitosa, V.P., Ogliari, F.A., Van Meerbeek, B., Watson, T.F., Yoshihara, K., Ogliari, A.O., 2014. Can the hydrophilicity of functional monomers affect chemical interaction?. J. Dent. Res., 93, 201-06.

Ferracane, J.L., 2006. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater., 22, 211-22.

Fowkes, F.M., 1990. Quantitative characterization of the acid–base properties of solvents, polymers, and inorganic surfaces. J. Adhesion. Sci. Technol., 4, 669-91.

Frassetto, A., Breshi, L., Turco, G., Marchesi, G., Di Lenarda, R., Tay, F.R., Pashley, D.H., Cadenaro, M., 2016. Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability-A literature review. Dent. Mater., 32, 41-53.

Hashimoto, M., Ito, S., Tay, F.R., Svizero, N.R., Sano, H., Kaga, M., Pashley, D.H., 2004. Fluid movement across the resin-dentin interface during and after bonding. J. Dent. Res., 83, 843-49.

Hass, V., Dobrovolski, M., Zander-Grande, C., Martins, G.C., Arana, L.A., Rodrigues, M.L., 2013. Correlation between degree of conversion, resin–dentin bond strength and nanoleakage of simplified etch-and-rinse adhesives. Dent. Mater., 29, 921-28.

Henestroza, G., 2010. Adhesión en la odontología restauradora. 2nd Edition. Madrid: Ripano S.A.

Heymann, H., Swift, E., Ritter, A., 2012. Sturdevant's art and science of operative dentistry. 6th Edition. Missouri: Mosby, Elsevier.

Ikemura, K., Endo, T., 2010. A review of our development of dental adhesives —Effects of radical polymerization initiators and adhesive monomers on adhesion. Dent. Mater. J., 29(2), 109-121.

Jacobsen, T., Soderholm, K.J., 1995. Some effects of water on dentin bonding. Dent. Mater., 11(2), 132-6.

Kanca, J., 1992. A method for bonding to tooth struture using phosphoric acid as a dentin-enamel conditioner. QuintessenceInt. 22, 285-290.

Kirsten, L., Van Landuyta, K.L., Snauwaertb, J., De Muncka, J., Peumansa, M., Yoshidac, Y., Poitevina, A., 2007. Systematic review of the chemical composition of contemporary dental adhesives. Biomater., 28, 3757-85.

Kotra, L.P., Cross, J.B., Shimura, Y., Fridman, R., Schlegel, H.B., Mobashery, S., 2001. Insight into the complex and dynamic process of activation of matrix metalloproteinases. J. Am. Chem. Soc., 123, 3108-13.

Krawczyk, J., Szymczyk, K., Zdziennicka, A., Janczuk, B., 2013. Wettability of polymers by aqueous solution of binary surfactants mixture with regard to adhesion in polymer–solution system I. Correlation between the adsorption of surfactants mixture and contact angle. Int. J. Adhes. Adhes., 45, 98-105.

Leforestier, E., Darque-Ceretti, E., Peiti, Ch., Bouchard, P.O., Bolla, M., 2010. Determining the initial viscosity of 4 dentinal adhesives. Relationship with their penetration into tubuli. Int. J. Adhes. Adhes., 30, 393-402.

Lehmann, N., Debret, R., Roméas, A., Magloire, H., Degrange, M., Bleicher, F., 2009. Self-etching increases matrix metalloproteinase expression in the dentin-pulp complex. J. Dent. Res., 88, 77-82.

Liu, Y., Tjäderhane, L., Breschi, L., Mazzoni, A., Li, N., Mao, J., 2011. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J. Dent. Res., 90(8), 953-968.

Ma, Q., 2010. Transcriptional responses to oxidative stress: Pathological and toxicological implications. Pharmacol. Therapeut., 125, 376-393.

Malemud, C.J., 2006. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front. biosci. 11, 1696-1701.

Marshall, S.J., Bayne, S.C., Baier, R., Tomsia, P., Marshall, G.W., 2010. A review of adhesion science. Dent. Mater., 26, 11-16.

Mazzoni, A., Mannello, F., Tay, F.R., Tonti, G.A., Papa, S., Mazzotti, G., 2007. Zymographic analysis and characterization of MMP-2 and -9 forms in human sound dentin. J. Dent. Res., 86(5), 436-40.

Mazzoni, A., Pashley, D.H., Nishitani, Y., Breschi, L., Mannello, F., Tjäderhane, L., 2006. Reactivation of inactivated endogenous proteolytic activities in phosphoric acid-etched dentin by etch-and-rinse adhesives. Biomater., 27, 4470-4476.

Mazzoni, A., Scaffa, P., Carrilho, M., Tjäderhane, L., Di Lenarda, R., Polimeni, A., 2013. Effects of etch-and-rinse and self-etch adhesives on dentin MMP-2 and MMP-9. J. Dent. Res., 92(1), 82-6.

Misra, A., Spencer, P., Marangos, O., Wang, Y., Katz, J.L., 2004. Micromechanical analysis of dentin/adhesive interface by the finite element method. J. Biomed. Mater. Res. B. Appl. Biomater., 70(1), 56-65.

Moon, P.C., Weaver, J., Brooks, C.N., 2010. Review of matrix metalloproteinases: Effect on the hybrid dentin bond layer stability and chlorhexidine clinical use to prevent bond failure. Open. Dent. J., 4, 147-152.

Nakabayashi, N., Nakamura, M., Yasuda, N., 1991. Hybrid layer as a dentin-bonding mechanism. J. Esthet. Res. Dent., 3, 133-38.

Nakabayashi, N., Takarada, K., 1992. Effect of HEMA on bonding to dentin. Dent. Mater., 8, 125-30.

Nishitani, Y., Yoshiyama, M., Wadgaonkar, B., Breschi, L., Mannello, F., Mazzoni, A., 2006. Activation of gelatinolytic collagenolytic activity in dentin by self-etching adhesives. Eur. J. Oral. Sci., 114(2), 160-6.

Nishiyama, N., Suzuki, K., Yoshida, H., Teshima, H., Nemoto, K., 2004. Hydrolytic stability of methacrylamide in acidic aqueous solution. Biomater., 25(6), 965-9.

Pashley, D.H., Agee, K.A., Wataha, J.C., Rueggeberg, F., Ceballos, L., Itoud, K., 2003. Viscoelastic properties of demineralized dentin matrix. Dent. Mater., 19, 700-06.

Pashley, D.H., Tay, F.R., Breschi, L., Tjderhane, L., Carvalho, R., Carrilho, M., Tezvergil, A., 2011. State of the art etch-and-rinse adhesives. Dent. Mater., 27, 1-16.

Pashley, D.H., Tay, F.R., Yiu, C., Hashimoto, M., Breschi, L., Carvalho, R.M., 2004. Collagen degradation by host-derived enzymes during aging. J. Dent. Res., 83(3), 216-221.

Pashley, E.L., Zhang, Y., Lockwood, P.E., Rueggeberg, F.A., Pashley, D.H., 1998. Effects of HEMA on water evaporation from water–HEMA mixtures. Dent. Mater., 14, 6-10.

Peutzfeldt, A., 1994. Quantity of remaining double bonds of diacetyl-containing resins. J. Dent. Res., 73(2), 511-15.

Sbardella, D., Fasciglione, G.F., Gioia, M., Ciaccio, C., Tundo, G.F., Marini, S., 2012. Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes Mol. Aspect. Med., 33, 119-208.

Schweikl, H., Spagnuolo, G., Schmalz, G., 2006. Genetic and cellular toxicology of dental resin monomers. J. Dent. Res., 85(10), 870-77.

Spencer, P., Ye, Q., Park, J., Topp, E., Misra, A., Marangos, O., 2010. Adhesive/dentin interface: the weak link in the composite restoration. Ann. Biomed. Eng., 38(6), 1989-2003.

Sulkala, M., Larmas, M., Sorsa, T., Salo, T., Tjaderhane, L., 2002. The localization of matrix metalloproteinase -20 (MMP-20, enamelysin) in mature human teeth. J. Dent. Res., 81(9), 603-07.

Tersariol, I.L., Geraldeli, S., Minciotti, C.L., Nascimento, F.D., Pääkkönen, V., Martins, M.T., 2010. Cysteine cathepsins in human dentin-pulp complex. J. Endod., 36, 475-481.

Tezvergil-Mutluay, A., Mutluay, M., Seseogullari-Dirihan, R., Agee, K.A., Key, W.O., Scheffel, D.L.S., 2013. Effect of phosphoric acid on the degradation of human dentin matrix. J. Dent. Res., 92, 87-91.

Tjäderhane, L., Nascimento, F.D., Breschi, L., Mazzoni, A., Tersariol, I., Geraldeli, S., 2013a. Strategies to prevent hydrolytic degradation of the hybrid layer- A review. Dent. Mater., 29, 999-1011.

Tjäderhane, L., Nascimento, F.D., Breschi, L., Mazzoni, A., Tersariol, I., Geraldeli, S., 2013b. Optimizing dentin bond durability: Control of collagen degradation by matrix metalloproteinases and cysteine cathepsins. Dent. Mater., 29, 116-35.

Toledano, M., Osorio, R., Sánchez, F., Osorio, E., 2003. Arte y ciencia de los materiales odontológicos. Barcelona: Ediciones Avances, Lexus.

Vaidyanathan, J., Vaidyanathan, T.K., Kerrigan, J.E., 2007. Evaluation of intermolecular interactions of self-etch dentin adhesive primer molecules with type I collagen: Computer modeling and in vitro binding analysis. ActaBiomater., 3, 705-14.

VanLanduyt, K.L., Snauwaert, J., De Munck, J., Peumans, M., Yoshida, Y., Poitevin, A., Coutinho, E., Suzuki, K., Lambrechts, P., Van Meerbeek, B., 2007. Systematic review of the chemical composition of contemporary dental adhesives. Biomater., 28, 3757-3785.

VanMeerbeek, B., Yoshihara, K., Yoshida, Y., Mine, A., De Munck, J., Van Landuyt, K.L., 2011. State of the art of self-etch adhesives. Dent. Mater., 27, 17-28.

VanNoort, R., Cardew, G., Howard, I., Norooze, S., 1991. The effect of local interfacial geometry on the measurements of the tensile bond strength to dentin. J. Dent. Res., 70, 889-9.

Xu, J., Stangel, I., Butler, I.S., Gilson, D.F.R., 1997. An FT-Raman spectroscopic investigation of dentin and collagen surfaces modified by 2-hydroxyethylmethacrylate. J. Dent. Res., 76(1), 596-601.

Yoshida, Y., Nagakane, K., Fukuda, R., Nakayama, Y., Okazaki, M., Shintani, H., 2004. Comparative study on adhesive performance of functional monomers. J. Dent. Res., 83(6), 454-458.

Yoshida, Y., Van Meerbeek, B., Nakayama, Y., Yoshioka, M., Snauwaert, J., Abe, Y., 2001. Adhesion to and decalcification of hydroxyapatite by carboxylic acids. J. Dent. Res., 80, 1565-9.

Zhang, S.C., Kern, M., 2009. The role of host-derived dentinal matrix metalloproteinases in reducing dentin bonding of resin adhesives. Int. J. Oral. Sci., 601.1(4), 163-176.

Published

2016-02-21

How to Cite

Baldión, P. A. ., & Julio Cortés, C. (2016). Mathematical models of polymer-dentin physicochemical interactions and their biological effects. Scientific Journal of Crop Science, 5(2), 319-330. Retrieved from https://sjournals.com/index.php/sjcs/article/view/70