Intestinal microbiota of ornamental fish Carassius auratus
Keywords:
Carassius auratus, Fish, Microbiota, IntestineAbstract
Intestinal microbiota is an essential component for any organism life, because it directly affects nutrient assimilation, growth and health processes. However, in many animals and in case of fish is unknown how Intestinal microbiota is formed, which species are dominant and which one has capacity probiotic for use in aquaculture. The goal of this study was to establish the bacterial load that dominates the back intestine of Carassius auratus.A batch of 200 healthyjuvenilefishes were obtained from an ornamental fish farm in Mexico City. The fish were maintained in two culture beakers of 100 L during 15 day to acclimatization to ensure any sign of injury disease. To extract the back of gastrointestinal tract, which was rinse several times with distilled water for food and feces residues elimination. The sample was inoculated in 9 mL of sterile saline solution and from this, three dilutions in a 1:10 relation were made, inoculating 0.1 mL from each dilution in agar plates MRS, BHI and TCBS, and were incubated at 27ºC for 24 hours. Subsequently a colony forming units (CFU mL-1) count was made, with the help of a Quebec counter type. Colonies were purified through successive inoculations. The molecular identification was made out by sequencing the gene RNAr 16S using Wizard Genomic. Molecular identification showed that the back region of the intestinal tract of C. auratus was dominated by phylum Proteobacteria and Firmicutes represented by the genus Bacillus, Vibrio, Vagococcus, Brevibacillus, Aeromonas, Pseudomonas, Shewanella, Enterococcus, Paenibacillus and Morganella.In relation to bacterial abundance by specie it was established that Bacillus sp. and Pseudomonas stutzeriwere the most abundant reaching CFU mL-1 counts of 210 and 167 respectively, followed byPaenibacillus lactis with 103 CFU mL-1 and Bacillus cereus with 100 CFU mL-1 while Enterococcus eurekensiswas the least abundant with an average value of 6 CFU mL-1.
References
Aguilera, E., Yany, G., Romero, J., 2013. Cultivable intestinal microbiota of yellowtail juveniles (Seriolalalandi) in an aquaculture system. Lat. Am. J. Aquat. Res., 41(3), 395-403.
Al-Harbi, A.H., Uddin, M.N., 2004. Seasonal variation in the intestinal bacterial flora of hybrid tilapia (Oreochromisniloticus x O. aureus) cultured in earthen ponds in Saudi Arabia. Aquaculture., 229, 37-44.
Al-Harbi, A.H., Uddin, M.N., 2005. Bacterial diversity of tilapia (Oreochromisniloticus) cultured in brackish water in Saudi Arabia. Aquaculture., 250, 566-572.
Al-Harbi, A.H., y Uddin, M.N., 2008. Aerobic bacterial flora of common carp (Cyprinuscarpio L) cultured in earthen ponds in Saudi Arabia. J. Appl. Aquaculture., 20, 108–119.
Balcázar, J.L., De Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D., y Múzquiz, J.L., 2006. The role of probiotics in aquaculture. Vet. Microbiol., 114, 173–186.
Clements, K.D., Angert, E.R., Montgomery, W., Linn, C.J., Howard, C.J., 2014. Intestinal microbiota in fishes: what's known and what's not. Molecul. Ecol., 23(8), 1891–1898.
Damas, T., 2005. Sistema de cría del Carassiusauratus (Goldfish). ACPA. 2, 18-19.
Diep, N., Cam, P., Vung, N., Lai, To., My, N., 2009. Isolation of Pseudomonas stutzeri in wastewater of catfish fish-ponds in the Mekong Delta and its application for wastewater treatment. Bioresour. Technol., 100, 3787–3791.
Günther, J., y R. Jiménez-Montealegre., 2004. Efecto del probiótico Bacillus subtilis sobre el crecimiento y alimentación de tilapia (Oreochromisniloticus) y langostino (Macrobrachiumrosenbergii) en laboratorio. Rev. Biol. Trop., 52, 937-943.
Hamdan, P., 2004. Biomonitoreo: seguimiento de poblaciones microbianas en procesos de biorremediación de suelos contaminados con hidrocarburos. Tesis para obtener el grado de Maestro en biotecnología. México, Universidad Autónoma Metropolitana- Iztapalapa. 86.
Herrera, M., Vargas, A., Moya, T., Campos, M. y I. Yock., 2000. Aislamiento de Aeromonashydrophila en el Hospital Nacional de Niños 1995-1998. Revista Médica del Hospital Nacional de Niños. 35, 12-17.
Hooper, L., Midwedt, T., Gordon, J., 2002. How host microbial interactions shape the nutrient environment of the mammalian intestine. Ann. Rev. Nutr., 22, 283–307.
Huang, J., Sun, B., Zhang, X., 2010. Shewanella xiamenensis sp. nov., isolated from coastal sea sediment. Int. J. Syst. Evol. Microbiol., 60, 1585–1589.
Jaffrès, E., Sohier, D., Leroi, F., Pilet, M.F., Prévost, H., Joffraud, J.J., y Dousset, X., 2010. Study of the bacterial ecosystem in tropical cooked and peeled shrimps using a polyphasic approach. Int. J. Food. Microbiol., 131, 20-29.
Kim, H.J., Camilleri, M., McKenzie, S., Lempke, M.B., Burton, D.D., 2007. A randomized controlled trail of a probiotic, VSL#3 on gut transit and symptoms in diarrhoea-predominant IBS. Aliment. Pharmacol. Ther., 17, 895–904.
Mahdhi, A., Kamoun, F., Messina, C., Santulli, A., y A. Bakhrouf., 2012. Probiotic properties of Brevibacillus brevis and its influence on sea bass (Dicentrarchuslabrax) larval rearing. Afr. J. Microbiol. Res., 6(32), 6487-6495.
McFarland, L., Beneda, H., Clarridge, J., Raugi, G., 2007. Implications of the changing face of Clostridium difficile disease for health care practitioners. Am. J. Infect. Control., 35, 237–253.
Merrifield, D., Burnard, D., Bradley, B., Davies, S. y Baker, R., 2009. Microbial community diversity associated with the intestinal mucosa of farmed rainbow trout (Oncoryhnchus mykissWalbaum). Aquaculture. Res., 40, 1064-1072.
Monroy, D.M.C., Castro, B.T., Fernández, P.F.J., Mayorga, R.L., Herrera, G.H., Cortés, S.S., 2012. Bacteria with probiotic capabilities isolated from the digestive tract of the Ornamental fish Pterophyllumscalare. En: probiotic in animals. Everlon Cid Rigobelo (Ed.). Zagreb, Croacia. 284.
Monroy, M.C., 2010. Uso de cepas probioticas para el control de Aeromonashydrophila (Chester, 1901), causante de septicemia hemorrágica en Pterophyllumscalare (Liechtenstein, 1823) (Pez Ángel). Tesis para obtener el grado de Doctora en Ciencias Biológicas. México, Universidad Autónoma Metropolitana- Xochimilco. 92.
Moya, T., Herrera, M., Vargas, A., Herrera, J., Marín, J. y M. Herrera., 2001. Morganellamorganii estudio sobre el aislamiento de 192 cepas en el Hospital Nacional de Niños, entre 1995 y 2000. Revista Médica del Hospital Nacional de Niños Costa Rica. 36(1-2), 44-65.
Mukherjee, A., y Ghosh, K., 2014. Antagonism against fish pathogens by cellular components and verification of probiotic properties in autochthonous bacteria isolated from the gut of an Indian major carp, Catlacatla (Hamilton). Aquaculture. Res., (5), 1-13.
Munro, L., 1982. The pathogenesis of bacterial disease of fishes. En: Ronald, J. (comp.), Microbial diseases of fishes. Academic Press, London. 80.
Nayak, S.K., 2010. Role of gastrointestinal microbiota in fish. Aquaculture. Res., 41(11), 1553–1573.
Nikoskelainen, S., Ouwehand, S.S., y G. Bylund., 2001. Protection of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture., 198, 229-236.
Potron, A., Poirel, L., y Nordmann, P., 2011. Origin of OXA-181, on emeging carbapenem- hydrolyzing oxacallinase, as a chromosomal Gene in Shewanella xiamensis. Antimicrob. Agents. Chemother., 55(9), 4405-4407.
Ringo, E., Olsenb, R., Mayhewc, T., y Myklebustd, R., 2003. Electron microscopy of the intestinal microflora of fish. Aquaculture., 227, 395 – 415.
Sambrook, J., 1989. Molecular Cloning: A Laboratory Manual. 2da edition, Ed. Cold Spring Harbor Laboratory Press. New York. USA. 212.
Silva, F., Nicoli, R., Zambonino, I., Kaushik, S., y Gatesoupe, F., 2011. Influence of the diet on microbial diversity of fecal and gastrointestinal contents in gilthead sea bream (Sparusaurata) and intestinal contents in goldfish (Carassiusauratus). FEMS Microbiol. Ecol., 78(2), 285–296.
Suganya, D., Rajan, M.R., y Sivakumar, P., 2014. Isolation, identification, enzymatic and molecular characterization of intestinal bacteria of Goldfish (Carassiusauratus) and its role on growth. India. J. Appl. Res., 4, 9-11.
Sugita, H., Hirose, Y., Matsuo, N., y Deguchi, Y., 1998. Production of the antibacterial substance by Bacillus species strain NM12, an intestinal bacterium of Japanese Coastal fish. Aquaculture., 165, 269-280.
Sugita, H., Tsunohara, M., Ohkoshi, T., y Deguchi, Y., 1988. The establishment of an intestinal microflora in developing Goldfish (Carassiusauratus) of culture ponds. Microb. Ecol., 15(3), 333-344.
Tatsuro, H., Daichi, T., Yasutada, I., y Takayuki, H., 2004. Diversity and seasonal changes in lactic acid bacteria in the intestinal tract of cultured freshwater fish. Aquaculture., 234, 335–346.
Wu, S., Yuan, L., Zhang, Y., Liu, F., Li, G., Wen, K., Kocher, J., Yang, X., y Sun, J., 2013. Gut Pathogens. 5- 22.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Dafne Itzel Orozco Rojas, María del Carmen Monroy-Dosta, Jorge Castro Mejía, Aida Hamdan Partida, Alberto Ramírez Torrez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.