Nematode as a soil biodiversity indicator

Authors

  • Sanaz Shoghi Kalkhoran Ph.D student of Agroecology, Department of Agronomy, Faculty of Agriculture, University of Zabol, and P.O. Box: 98615-538, Postal code: 9861335856. Zabol, Iran
  • Ahmad Gholamalizadeh Ahangar Department of Soil Sciences, Faculty of Soil and Water Engineering, University of Zabol, Zabol, Iran

Keywords:

biodiversity; indicator; nematode; soil

Abstract

Nematodes are one of the most abundantanimals on earth. Their food specificity, the high number of species and highabundance in every habitat where decomposition takes place indicates that thestructure of the nematode community has high information content. Since nematodesrespond rapidly to new resources, and the nematode fauna can be efficientlyanalyzed, the structure of the nematode community offers an instrument toassess (changes in) the conditions of soils. Therefore, indicators based onnematode community composition are among the best developed metrics of soilhealth.

References

Ayala, F.J., Rzhetsky, A., 1998. Origin of the metazoan phyla: molecular clocks conWrm paleontological estimates. Proc. Natl. Acad. Sci., USA. 95, 606–611.

Berkelmans, R., Ferris, H., Tenuta, M., van Bruggen, A.H.C., 2003. Effects of long-term crop management on nematode trophic levels other than plant feeders disappear after 1year of disruptive soil management. Appl. Soil Ecol., 23, 223–235.

Bongers, T., 1990. The maturity index, an ecological measure of environmental disturbance based on nematode speciescomposition. Oecologia., 83, 14–19.

Bongers, T., Bongers, M., 1998. Functional diversity of nematodes. Appl. Soil Ecol. 10, 239–251.

Bongers, T., Ferris, H., 1999. Nematode community structure as a bioindicator in environmental monitoring. Tree., 14, 224–228.

Bostro¨m, C., O’Brien, K., Roos, C., Ekebom, J., 2006. Environmental variables explaining structural and functional diversity of seagrassmacrofauna in an archipelago landscape. J. Exp. Mar. Biol. Ecol.,335, 52–73.

Bremner, J., Rogers, S.I., Frid, C.L.J., 2003. Assessing functional diversity in marine benthic ecosystems: a comparison of approaches. Mar. Ecol. Progr. Ser., 254, 11–25.

Chalcraft, D.R., Resetarits, W.J., 2003. Mapping functional similarity of predators on the basis of trait similarities. American Naturalist., 162, 390–402.

Coleman, D.C., Crossley, J.r., D.A., Hendrix, P., 2004. Fundamentals of Soil Ecology, 2nded. Elsevier Academic Press. Boston., pp. 386.

Curtis, T.P., Sloan, W.T., 2004. Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr. Opin. Microbiol. 7, 221–226.

Curtis, T.P., Sloan, W.T., Scannell, J.W., 2002. Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci., USA. 99, 10494– 10499.

De Deyn, G.B., Raaijmakers, C.E., van Ruijven, J., Berendse, F., van der Putten, W.H., 2004. Plant species identityand diversity effects on different trophic levels of nematodes in the soil food web. Oikos., 106, 576–586.

Dmowska, E., Kozlowska, J., 1988. Communities of nematodes in soil treated with semi-liquid manure. Pedobiologia., 32, 323–330.

Ekschmitt, K., Bakonyi, G., Bongers, M., Bongers, T., Bosr¨om, S., Dogan, H., Harrison, A., Nagy, P., O’Donnell, A.G., Papatheodorou, E.M., Sohlenius, B., Stamou, G.P., Wolters, V., 2001. Nematode community structure asindicator of soil functioning in European grassland soils. Eur. J. Soil Biol., 37, 263–268.

Ekschmitt, K., Bakonyi, G., Bongers, M., Bongers, T., Bostro¨m, S., Dogan, H., Harrison, A., Kallimanis, A., Nagy, P., O’Donnell, A.G., Sohlenius, B., Stamou, G.P., Wolters, W., 1999. Effects of the nematode fauna on microbial energy and matter transformation rates in European grassland soils. Plant Soil., 212, 45–61.

Erwin, T.L., 1991. How many species are there—revisited. Conserv. Biol., 5, 330–333.

Ettema, C.H., Bongers, T., 1993. Characterization of nematode colonization and succession in disturbed soil using the maturityindex. Biol. Fertil. Soils., 16, 79–85.

Ferris, H., Bongers, T., de Goede, R.G.M., 2001. A framework for soil food web diagnostics: extension of the nematodefaunal analysis concept. Appl. Soil Ecol., 18, 13–29.

Ferris, H., Matute, M.M., 2003. Structural and functional succession in the nematode fauna of a soil food web. Appl.Soil Ecol., 23, 93–110.

Forge, T.A., Bittman, S., Kowalenko, C.G., 2005. Responses of grassland soil nematodes and protozoa to multi-year and single-year applications of dairy manureslurry and fertilizer. Soil Biol. Biochem.,37, 1751–1762.

Freckman, D.W., Ettema, C.H., 1993. Assessing nematode communities in agroecosystems of varying human intervention. Agric. Ecosyst. Env., 45, 239–261.

Freckman, D.W., Virginia, R.A., 1997. Low-diversity Antarctic soil nematode communities: Distribution and responseto disturbance. Ecol., 78, 363–369.

Frid, C.L.J., Rogers, S.I., Nicholson, M., Ellis, J.R., Freeman, S., 2000. Using biological characteristics to develop new indices of ecosystem health. In: ICES, Copenhagen, Denmark: Mini-symposium on defining therole of ICES in supporting biodiversity conservation.

Giere, O., 1993. Meiobenthology – The Microscopic Fauna in Aquatic Sediments. Springer Verlag, Berlin. Germany., pp. 328.

Hammond, P.M., Hawksworth, D.L., Kalin-Arroyo, M.T., 1995. Magnitude and distribution of biodiversity: 3.1. The current magnitude of biodiversity. In: Heywood, V.H. (Ed.), Global Biodiversity Assessment.Cambridge University Press. Cambridge., UK, pp. 113–138.

Heip, C., Vincx, M., Vranken, G., 1985. The ecology of marine nematodes. Oceanography and Marine Biol. Annu. Rev., 23, 399–489.

Huhta, V., Ikonen, E., Vilkamaa, P., 1979. Succession of invertebrate populations in artificial soil made of sewagesludge and crushed bark. Ann. Zool. Fenn., 16, 223–270.

Kimpinski, J., Sturz, A.V., 1996. Population growth of a rhabditid nematode on plant growth promoting bacteria from potato tubers and rhizosphere soil. J. Nematol., 28, 682–686.

Knox, O.G.G., Killham, K., Mullins, C.E., Wilson, M.J., 2003. Nematode-enhanced microbial colonization of the wheatrhizosphere. FEMS Microbiol. Lett., 225, 227–233.

Lambshead, P.J.D., 1993. Recent developments in marine benthic biodiversityresearch. Oceanis. 19, 5–24.

Liang, W.J., Li, F.P., Li, Q., Zhang, W.D., 2007. Temporal dynamics of soil nematode community structure under invasive Ambrosia trifidaand native Chenopodiumserotinum. Helminthologia., 44, 29–33.

Li, Q., Liang, W.J., Ou, W., 2008. Responses of nematode communities to different land uses in an aquic brown soil. Front. Biol. China., 3, 518–524.

Li, J., Vincx, M., Herman, P.M.J., Heip, C., 1997. Monitoring meiobenthos using cm-, m- and km-scales in the Southern Bight of the North Sea. Mar. Env. Res., 43, 265–278.

Lundquist, E.J., Jackson, L.E., Scow, K.M., Hsu, C., 1999. Changes in microbial biomass and community composition, and soil carbon and nitrogen pools after incorporation of rye into three California agricultural soils. Soil Biol. Biochem., 31, 221–236.

Mulder, C., De Zwart, D., Van Wijnen, H., Schouten, A., Breure, A., 2003. Observational and simulated evidence of ecological shifts within the soil nematode community of agroecosystems under conventional and organic farming. Funct. Ecol.,17, 516–525.

Nahar, M.S., Grewal, P.S., Miller, S.A., Stinner, D., Stinner, B.R., Kleinhenz, M.D., Wszelaki, A., Doohan, D., 2006. Differential effects of raw and composted manure on nematode community, and its indicative value for soil microbial, physical and chemical properties. Appl. Soil Ecol., 34, 140–151.

Neher, D.A., 2001. Role of nematodes in soil health and their use as indicators. J. Nematol., 33, 161–168.

Noffke, N., Hazen, R., Nhleko, N., 2003. Earth’s earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South Africa). Geol.,31, 673–676.

Rappe, M.S., Giovannoni, S.J., 2003. The uncultured majority. Annul. Rev. Microbiol., 57, 369–394.

Rodriguez-Trelles, F., Tarrio, R., Ayala, F.J., 2002. A methodological bias toward overestimation of molecular evolutionary time scales. Proc.Natl. Acad. Sci., USA. 99, 8112–8115.

Sachs, H., 1950. Die Nematodenfauna der Rinderexkremente. Zool. Jahrb. Syst., 79, 209–272.

Soetaert, K., Vincx, M., Wittoeck, J., Tulkens, M., 1995. Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia., 311, 185–206.

Soetaert, K., Vincx, M., Wittoeck, J., Tulkens, M., van Gansbeke, D., 1994. Spatial patterns of Westerscheldemeiobenthos. Estuar. Coastal Shelf Sci., 39, 367–388.

Sohlenius, B., BostroÈm, S., 1984. Colonization, population development and metabolic activity of nematodes in buriedbarley straw. Pedobiologia., 27, 67–78.

Somerfield, P.J., Fonseca-Genevois, V.G., Rodrigues, A.C.L., Castro, F.J.V., Santos, G.A.P., 2003. Factors affecting meiofaunal community structure in the Pina Basin, an urbanized embayment on the coast of Pernambuco, Brazil. J. Mar. Biolog. Assoc. Unit. Kingdom., 83, 1209–1213.

Steyaert, M., Garner, N., van Gansbeke, D., Vincx, M., 1999. Nematode communities from the North Sea: environmental controls on species diversity and vertical distribution within the sediment. J. Mar. Biolog. Assoc. Unit. Kingdom., 79, 253–264.

Steyaert, M., Vanaverbeke, J., Vanreusel, A., Barranguet, C., Lucas, C., Vincx, M., 2003. The importance of fine-scale, vertical profiles in characterizing nematode community structure. Estuarine. Coastal Shelf Sci., 58, 353–366.

Thistle, D., Sherman, K.M., 1985. The nematode fauna of a deep-sea site exposed to strong near-bottom currents. Deep-Sea Res., 32, 1077–1088.

Tita, G., Desrosiers, G., Vincx, M., Clement, M., 2002. Intertidal meiofauna of the St Lawrence estuary (Quebeck, Canada): diversity, biomass and feeding structure of nematode assemblages. J. Mar. Biolog. Assoc. Unit. Kingdom., 82, 779–791.

Torsvik, V., Øvreås, L., Thingstad, T.F., 2002. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Sci., 296, 1064–1066.

Wang, J.K., Zhang, X.D., Wang, T.Y., Zhao, Y.C., Wang, Q.B., 2002. An approach to the changes of black soil quality. II. The status and changes of organic matter, total N, total S and total P in black soils in different areas. J. Shenyang Agric. Univ., (in Chinese). 33, 270–273.

Wasilewska, L., Paplinska, E., Zielinski, J., 1981. The role of nematodes in decomposition of plant material in a rye field. Pedobiologia., 21, 182–191.

Wu, J.H., Fu, C.Z., Chen, S.S., Chen, J.K., 2002. Soil faunal response to land use: Effect of estuarine tidelandreclamation on nematode communities. Appl. Soil Ecol., 21, 131–147.

Yang, X.M., Zhang, X.P., Fang, H.J., Liang, A.Z., 2004. Changes in organic matter and total nitrogen of black soilsin Jilin province over the past two decades. Sci. Geogr. Sin., (In Chinese). 24, 710–714.

Yeates, G.W., 2003. Nematodes as soil indicators: functional and biodiversity aspects.Biol. Fertil. Soils. 37, 199–210.

Yeates, G.W., Bardgett, R.D., Cook, R., Hobbs, P.J., Bowling, P.J., Potter, J.F., 1997. Faunal and microbialdiversity in three Welsh grassland soils under conventional and organic management regimes. J. Appl. Ecol., 34,453–470.

Yeates, G.W., Bongers, T., de Goede, R.G.M., Freckman, D.W., Georgieva, S.S., 1993. Feeding habits in soilnematode families and genera: An outline for ecologists. J. Nematol., 25, 315–331.

Zhuang, Q.L., 2007. Distribution of carbon, nitrogen and phosphorus in farmland soil of Songliao Plain (in Chinese). M.S. Thesis, Graduate School of the Chinese Academy of Sci. Beijing.

Published

2014-03-20

How to Cite

Shoghi Kalkhoran, S. ., & Gholamalizadeh Ahangar, A. . (2014). Nematode as a soil biodiversity indicator. Agricultural Advances, 3(3), 67-73. Retrieved from http://sjournals.com/index.php/aa/article/view/722

Issue

Section

Review Article