Predicting solubility index of roller dried goat whole milk powder using Bayesian regularization ANN models
Keywords:
Solubility index, Artificial neural network, Bayesian regularization algorithm, Goat, Milk powderAbstract
A predictive model for predicting solubility index of roller dried goat whole milk powder using artificial neural network is proposed. The model takes into account solubility index of the product as a function of roller dried goat milk. Feedforward networks with one hidden layer were used with Bayesian regularization algorithm. The best fitting with the training data set was obtained with 4à5à1 topology, which made possible to predict solubility index of roller dried goat whole milk powder with accuracy, at least as good as the experimental error, over the whole experimental range. On the validation data set, simulations and experimental kinetics test were in good agreement. The developed model can be used for predicting solubility index of roller dried goat whole milk powder.References
Gori, A., Chiara, C., Selenia, M., Nocetti, M., Fabbri, A., Caboni, M.F., Losi, G., 2011. Prediction of seasonal variation
of butters by computing the fatty acids composition with artificial neural networks. Euro. J. Lip. Sci. Tech. 113
(11), 1412–1419.
Abraham, A., 2006. Artificial Neural Networks, Oklahoma State University, Stillwater OK, USA.
Benedetti, S., Mannino, S., Sabatini, A.G. Marcazzan, G.L., 2004. Electronic nose and neural network use for the
classification of honey. Apidologie. 35, 1–6.
Fraley, C., Raftery, A.E., 2007. Bayesian regularization for normal mixture estimation and model-based clustering. J.
of Classifi. 24, 155-181.
Goyal, Sumit, Goyal, G.K., 2011. Brain based artificial neural network scientific computing models for shelf life
prediction of cakes. Canad. J. A.I. Mach. Learng. & Pattrn. Recog. 2(6), 73-77.
Goyal, Sumit., Goyal, G.K., 2012a. Artificial neuron based models for estimating shelf life of burfi. ARPN J. Sci. Tech.
(6), 536-540.
Goyal, Sumit., Goyal, G.K., 2012b. Machine learning Elman technique for predicting shelf life of burfi. Int. J. Mod.
Edu. Comp. Sci. 4(7), 17-23.
Goyal, Sumit., Goyal, G.K., 2012c. Radial basis (exact fit) artificial neural network technique for estimating shelf life
of burfi. Adv. Comp. Sci. App. 1(2), 93-96.
Goyal, Sumit., Goyal, G.K., 2012d. Time – delay single layer artificial neural network models for estimating shelf life
of burfi. Int. J. Res. Studies in Comp. 1(2), 11-18.
Goyal, Sumit., Goyal, G.K., 2012e. Soft computing single hidden layer models for shelf life prediction of burfi.
Russian J. Agril. & Socio-Eco. Sci. 5(5), 28-32.
Goyal, Sumit., Goyal, G.K., 2012f. Study on single and double hidden layers of cascade artificial neural intelligence
neurocomputing models for predicting sensory quality of roasted coffee flavoured sterilized drink. Int. J. App.
Info. Sys. 1(3), 1-4.
Goyal, Sumit., Goyal, G.K., 2012g. Elman backpropagation single hidden layer models for estimating shelf life of
kalakand, Adv. Inf. Technol. & Mgmnt. 1(3), 127-131.
Goyal, Sumit., Goyal, G.K., 2012h. Shelf life determination of kalakand using soft computing technique. Adv.
Computanl. Math & its Appl. 1(3), 131-135.
Goyal, Sumit., Goyal, G.K., 2012i. Central nervous system based computing models for shelf life prediction of soft
mouth melting milk cakes. Int. J. Inf. Technol. & Comp. Sci. 4(4), 33-39.
Goyal, Sumit., Goyal, G.K., 2012j. Evaluation of shelf life of processed cheese by implementing neural computing
models. Int. J. Interactive Multi. & A.I. 1(5), 61-64.
Goyal, Sumit., Goyal, G.K., 2012k. Supervised machine learning feedforward backpropagation models for predicting
shelf life of processed cheese. J. Engg. 1(2), 25-28.
Goyal, Sumit., Goyal, G.K., 2012l. Potential of artificial neural network technology for predicting shelf life of
processed cheese. J. Knowledge Mgmnt, Econo. & Info. Technol. 2(4), 33-39.
Goyal, Sumit., Goyal, G.K., 2012m. Heuristic machine learning feedforward algorithm for predicting shelf life of
processed cheese. Int. J. Basic & Applied Sci. 1(4), 458-467.
Goyal, Sumit., Goyal, G.K., 2012n. Shelf life prediction of processed cheese by cascade backpropagation ANN
computing models. . Int. J. Electro, Computing & Engg. Edun. 3(1), 23-26.
Goyal, Sumit., Goyal, G.K., 2012o. Time-delay artificial neural network computing models for predicting shelf life of
processed cheese. BRAIN. Broad Res. in A. I. & Neurosci. 3(1), 63-70.
Zurera-Cosano, G., García-Gimeno, R.M., Rodríguez-Pérez, M.R., Hervás-Martínez, C., 2005. Validating an artificial
neural network model of leuconostoc mesenteroides in vacuum packaged sliced cooked meat products for
shelf-life estimation. Euro. Food Res. Tech., 221(5), 717-724.
Haenlein, G.F.W., 2004. Goat milk in human nutrition. Small Rum. Res. 51, 155–163.
Heatonsearch Website, 2011: http://www.heatonresearch.com/node/703 (accessed on 3.1.2011).
Olajide, J.O., Igbeka, J.C., Afolabi, T.J., Emiola, O.A., 2007. Prediction of oil yield from groundnut kernels in an
hydraulic press using artificial neural network (ANN), J. Food Engg. 81(4), 643–646.
Movagharnejad, K., Nikzad, M., 2007. Modeling of tomato drying using artificial neural network. Comp. Electro.
Agri. 59,78–85.
Sanzogni, L., Kerr, D., 2001. Milk production estimates using feed forward artificial neural networks. Comp. Electro.
Agri. 32(1), 21–30.
Marique, T., Kharoubi, A., Bauffe, P., Ducattillon, C.,2003. Modeling of fried potato chips color classification using
image analysis and artificial neural network .J. Food Sci. 68(7), 2263-2266.
Raharitsifa, N., Ratti, C., 2010. Foam-mat freeze-drying of apple juice part 1: Experimental data and ANN
simulations”. J. Food Proc. Engg. 33,268–283.
García-Gimeno, R.M., Hervás-Martínez, C., Rodríguez-Pérez, R., Zurera-Cosano, G., 2005. Modelling the growth of
leuconostoc mesenteroides by artificial neural networks. Int. J. Food Microbio.105(3),317–332.
Sutrisno., Edris, I. M., Sugiyono., 2009. Quality prediction of mangosteen during storage using artificial neural
network. International Agricultural Engineering Conference, Bangkok, Thailand, 7 – 10 December.
Unluturk, S., Unluturk, M.S., Pazir, F., Kuscu, A., 2011.Process Neural network method: Case Study I: Discrimination
of sweet red peppers prepared by different methods. EURASIP J. Adv. Sig. Process. 2011 (290950), 1-8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2012 S. Goyal, G. K. Goyal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.