Presence of volatile organic compound (VOCs) in the atmosphere of Ilupeju industrial area, Lagos state, Southwestern - Nigeria
Keywords:
Chromatography, Sampler, Concentration, Industrial, MeterologicalAbstract
Air pollution is the introduction of chemicals, particulate matter or biological materials that cause harm or discomfort to human or other living organisms. The atmosphere has always served as a disposal area. Air samples were collected by passive sampler (ORSA 5). The air samplers were exposed to a height of 1.5 - 2.0 m and sampling was carried out four times a month for a period of 12 months. The adsorbed VOCs were desorbed with carbondisulphide (CS2) and the solution analysed using Gas Chromatography (Gc) fitted with Flame Ionization Detector (FID). The results from analysis of the air samples showed that twenty - Six (26) VOCs were captured in the Industrial area. The VOCs in the industrial area were classified thus: aromatics 43%, halogenated 40%, esters 2%, ketones 6%, alcohols 5%, ethers 4%. There is a significant difference (Pvalue < 0.05) between the levels of VOCs in Ilupeju industrial area. The meteorological parameters showed significant correlations with the ambient concentrations of VOCs. The principal component analysis revealed that the major sources of VOCs in the industrial area are mainly anthropogenic and Six (6) factors were identified as sources of VOCs in the studied industrial areas with industrial emissions dominating.References
Agency for Toxic Substances and Disease Registry (ATSDR). 2001. Interaction profile of Benzene, Ethylbenzene, Toluene and Xylenes (BTEX) (draft for public comments) Atlanta, Agency for toxic Substances and diseases Registry, U. S Dept. health human serv.
American Society for Testing and Materials (ASTM)., 1988. Method D 3686-84. Standard practice for sampling atmospheres to collect organic compound vapours, Annual Book of ASTM Standard., 3(11), 234 – 240.
Cetin, E., Odabasi, M., Seyfioglu, R., 2003. Ambient volatile organic compounds concentrations around a petrochemical complex and a petroleum refinery. Sci. Total Env., 321, 103-112.
Chang C.C., Sree, U., Lin, Y.S., Lo, J.G., 2005. An examination of 7.00- 9.00 pm ambient air volatile organics in different seasons of Kaohsiung city, southern Taiwan. Atmos. Env.,36, 867 – 884.
Demeestere, K., Dewult, J., Witte, B., Van Langenhove, H., 2007. Sample Preparation for the analysis of volatile organic compounds in air and water matrices. J. Chrom., 1153, 130 – 144.
Eljarrat, E., Barcelo, D., 2003. Priority lists for Persistent Organic Pollutants and emerging contaminants based on their relative toxic potency in environmental samples. Trends Anal. Chem. 22, 655-665.
Ergas, S.J., McGrath, M.S., 2007. Membrane Biorector Control of Volatile Organic Compound Emissions. J. Env. Eng., 46 (2), 593 – 598.
Estate Management., 2009. Guidance on Emissions to Atmosphere. University of Cambridge. 800 years 1209 - 2009.
Gariazzo, C., Pelliccioni, A., Fillippo, P., Sallusti, F.C., 2005. Monitoring and analysis of volatile organic compounds around an Oil refinery. Water, Air, soil pollut., 167, 17–18.
Hesterberg, T.W., Lapin, C.A., Bunn, W.B., 2008. A comparison of emissions from vehicles fueled with diesel or compressed natural gas. Env. Sci. Techn., 42 (17), 6437 – 6441.
Kerbachi, R., Boughedaoui, M., Bounoue, L., Keddam, M., 2006. Ambient air mpollution by aromatic hydrocarbons in Algiers. Atmos. Environ. 40, 3995 - 4003.
Kim, Y. M., Harrad, S., Harrison, R. M., 2001. Concentrations and sources of VOCs in urban and public microenvironments. Env. Sci. Tech., 35, 997-1004.
Kolabokas, P. D.,Hatzianestis, J., Bartis, J. G., Papagiannakopoulos, P., 2001. Atmospheric Concentration of saturated and aromatic hydrocarbons around Greek oil refinery. Atmos. Environ. 35, 2545 - 2555.
Krzyanowski, M., 2005. Health effects of transport related air pollution: Summary for policy makers, United Nations World Health Organization (WHO). See (http: // www . euro. Who .int / document / e86650 sum.pdf ( last visited 10, July, 2006).
Lagos State Government LASG., 2006 Lagos State Regional plan (1980 – 2000). Ministry of Economic planning and Land Matters, Urban Regional plan Division, Ikeja, Lagos.
Liu, C., Xu, Z., Ciuo, H., 2008. Analysis of volatile organic compounds concentration and variation trends in air of Changchum, the northeast of China. Atmos. Env., 34, 4459 - 4566.
National Population Commission NPC, 2009. Misunderstanding, Misperception and Misrepresentation of Census 2006. A rejoinder to the Publication ; The Falsification of Lagos Census Figures by Lagos state.
Maria, R.R., Rosa, M.M., Francesc, B., 2009. Volatile Organic compounds in air at urban and industrial areas in the Tarragona region by thermal desorption and gas chromatography - mass spectrometry. Env. Monit. Asess.
Marr, L.C., Dzepina, K., Jinenez, J.L., Reison, L.T., Bethel, H.L., Arey, J., Gaftney, J.S., Marley, N.A., Molina, L.T., Malina, M.J. 2005. Source and transformation of particle - bound Polycyclic Aromatic hydrocarbons in Mexico City. Atoms. Chem - phys. Discuss., 5,12741 - 12773.
Minnesota Centre for Environmental Advocacy., 2003. Public health effects of traffic - related air pollution :– 9/10/2003. See http://www.mncentre.org/p.asp?webpage ID = 24 & profile ID = 295.
Molina, L.T., Kolb, C.E., de Foy, B., Lamb, B.K., Brune, W.H., Jimenez, J.L., Ramos - Villegas, R., Saarmiento , J., Paramo - Figueroa, V.H., Cardenas, B ., Gutierrez - Avedoy, V., Molina, M.J., 2007. Volatile Organic Compounds in Urban and industrial atmospheres: Measurement techniques and data analysis. Int. J. Env. Anal. Chem., 83 ,199 - 217.
Ohura, T., Amagai, T., Fusaya, M., 2006. Regional assessment of ambient Volatile Organic Compounds in an industrial harbour area, Shizuoka, Japan. Atmos. Env., 40, 238 - 248.
Okuo, J.M., Ojiodu, C.C., Olumayede, E.G., 2012. Ambient Air Pollution by Volatile Organic Compounds (VOCs) in Ikeja Industrial Areas of Lagos - State. Southwestern - Nigeria. Nig. J. Appl. Sci., 30,138 -149.
Ojiodu, C.C., Okuo, J.M., Ladan, M.S., 2012. Baseline Levels of Volatile Organic Compound in Apapa Industrial Areas of Lagos - State, Southwestern - Nigeria. Arch. of Appl. Sci. Res., 4 (6) 2564 – 2570.
Ojiodu, C.C., 2013. Temporal and spatial variation of Ambient Volatile Organic Compounds(VOCs) pollution in Ikeja Industrial Areas of Lagos State, Southwestern - Nigeria. Int. J. Res. Chem. Env., 3,12- 23.
Srivastava, A., Joseph, A.E., Patil, S., More, A., Dixit, R.C., Prakash, M., 2005. Air Toxic in Ambient Air of Delhi. Atmos. Env., 39, 59 - 71.
Statistical Package for Social Sciences (SPSS) Inc., 2007. SPSS for Windows, Version 15, SPSS Inc. Chicago, IIinois.
Tanimoto, H., Aoki, N., Inomata, S., Hirokawa, J., Sadanaga, Y., 2007. Development of a PTR - TOFMS instrument for real - time measurements of volatile organic compounds in air. Int. J. Mass spectrometry., 263, 1- 11.
Ulman, M., Chilmonczy, Z., 2007. Volatile Organic Compounds - Components, Sources, Determination. A
review . chem. Anal., 52, 173 - 200.
Ukpebor, E.E., Sadiku, Y.T., Ahonkahi, S.I., 2005. Indoor NO2 Sampling in a large university campus in Benin City, Southern Nigeria using palmes Diffusion tube, Paks. J. Sci. Ind. Res.. 48 (2), 103 - 107.
Vasu, T., Yoshimichi, H., Shigeki, M., 2009. Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama., 1-14.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 C. C. Ojiodu, E. G. Olumayede, T. R. Kuteyi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.