

Provided for non-commercial research and education use.

Not for reproduction, distribution or commercial use.



This article was published in a Sjournals journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the authors institution, sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or licensing copied, or posting to personal, institutional or third party websites are prohibited.

In most cases, authors are permitted to post their version of the article (e.g. in Word or Text form) to their personal website or institutional repository. Authors requiring further information regarding Sjournals's archiving and manuscript policies encouraged to visit:

<http://www.sjournals.com>

© 2025 Sjournals Publishing Company

Contents lists available at Sjournals

## Pure and Applied Science Advances

Journal homepage: [www.sjournals.com](http://www.sjournals.com)

### Original article

## Effects of seeding and nitrogen rate on yield, yield related traits and grain quality of malt barley varieties in the highlands of Bale

**Mengistu Bogale\* and Jitu Alemi***Oromia Agricultural Research Institute/Sinana Agricultural Research Center Bale-Robe, Ethiopia*\*Corresponding author: [mbalemu@gmail.com](mailto:mbalemu@gmail.com)

---

**ARTICLE INFO****Article history,**

Received 21 December 2024

Accepted 30 December 2024

Available online 07 January 2025

iThenticate screening 23 December 2024

English editing 28 December 2024

Quality control 05 January 2025

**Keywords,**

Malt barley

Seeding rate

Nitrogen rate

Grain yield

Grain protein content

Thousand kernel weight

---

**ABSTRACT**

The experiment was conducted at major barley growing districts (Sinana, Goba and Dinsho) of Bale zone for three years from 2016-2018 during the main cropping season with the objective of elucidating the effects of seeding and nitrogen rate on agronomic performance and grain protein content of the improved malt barley varieties. The experimental design in all locations was a split-plot with three replications. Two malt barley varieties (Grace and Traveler) were randomly assigned as main plot factor. On the other hand, factorial combinations of three seeding rates (100, 125 and 150 kg ha<sup>-1</sup>) and four levels of nitrogen fertilizer (0, 23, 46 and 69 kg N ha<sup>-1</sup>) were arranged in sub-plot factors. The main effects of seeding rate significantly influenced Bio-mass yield and TKW, while main effects of nitrogen rate significantly ( $P < 0.05$ ) influenced plant height, spike length, kernels per spike, bio-mass yield, harvest index TKW, HLW and grain protein content. The main effects of seeding rate and nitrogen rate interacted to significantly influenced grain yield of malt barley varieties. The grain yield ranged from 1905 kg ha<sup>-1</sup> to 3957 kg ha<sup>-1</sup>. The lowest grain (1905 kg ha<sup>-1</sup>) was obtained from the interaction effect of the lowest seeding rate and nil nitrogen rate. The highest (3957 kg ha<sup>-1</sup>) was obtained from the interaction effects of the highest seed and nitrogen rate. The second highest grain yield was recorded from the interaction effects of the second and the highest nitrogen rate in statistical parity with the grain yield from

---

the interaction effects of the highest seed rate and the second nitrogen rate. Main effects of nitrogen rate significantly and variably influenced TKW and grain protein contents of malt barley. The highest TKW (40.2g) and grain protein content (12.2%) were obtained from the highest nitrogen rate (69 kg N ha<sup>-1</sup>). The lowest TKW (36.1g) and grain protein content (9.2g) was recorded from nil nitrogen rate. According the result of this study optimum malt barley grain yield was obtained at seeding rate of 150kg ha<sup>-1</sup> and economic analysis also indicated that optimum grain yield and quality of the improved malt barley varieties were obtained at the rate of nitrogen application (46 kg N ha<sup>-1</sup>). Therefore, malt barley farmers in the study area should use seeding rate of 125 kg ha<sup>-1</sup> and nitrogen rate 46 kg N ha<sup>-1</sup> to realize maximum grain yield and grain quality of the crop.

© 2025 Sjournals. All rights reserved.

---

## 1. Introduction

Ethiopia is the only country in tropical Africa, where barley is among the major crop (Onwueme and Sinha, 1999). The most important use of Barley is for food and malting, which is mainly used in making alcoholic beverages. For this reason, Barley is considered to be the best of small grains for malting purpose. Barley grain yield and quality are exposed to different factors varying on the large scale. The genotypic traits for a variety and growing climatic conditions are the key factors influencing grain yield and its quality (Leistrumaitė and paplauskienė, 2005). The first step to success in the growing system of Barley in a given environment is the choice of suitable cultivar. The varietal effect account for 25 to 40% of variety performance compared to growing conditions (Dudas, 1994). Stability of grain yield performance is an important characteristics in the selection of new crop varieties (Costa and Bodero, 2001).

The impact of seeding rate on malt barley quality, including plumpness is an important factor in selecting barley for malt with plump seeds generally having higher starch and lower protein levels. The reason plumpness is so important is that maltsters wanted to produce more extract, which means more beer. Optimum seeding rate resulted in more uniformity of barley kernels, which improves the modification process and produces higher quality malt. According to O'Donovan (2008) optimum seeding rate also reduced beta-glucan levels while friability and homogeneity were improved all positive factors for maltsters.

The third most important factor, but the one posing the most challenges and additional questions to researchers, is related to Nitrogen. The major growers' management strategies for producing malt barely is to maximize grain yield and kernel plumpness while maintaining protein content at the acceptable limit (Lauer and Partrigde, 1990; Weston et al., 1993). High Nitrogen usually increase protein levels, but at protein levels higher than 11.5 percent, the sample will be rejected for malt. High nitrogen rate also increase beta-glucan levels, while other factors such as plumpness, friability and modification are decreased at higher nitrogen rates, all having negative effect on quality.

Higher nitrogen rates, sometimes increase the days to maturity, which can cause problems in years where there is a higher risk of frost or other conditions that will reduce malt barley quality. Research findings show that reducing nitrogen rates will improve malt barley quality. In principle, processors of malting barley are concerned about the effects of management factors on grain protein and other malting characteristics (Lauer and Partridge, 1990). Often, management strategies that maximize grain yield will not optimize grain protein (Lauer and Partridge, 1990; Ayoub et al., 1997; Metho et al., 1997) and malt quality (Lauer and Partridge, 1990).

At present, the level of production in Ethiopia is not sufficient to meet the demands of the malting factories both for quality and quantity. As a result, the factories are continuously importing the grain from foreign countries. Nevertheless, there are ample opportunities in Ethiopia in general and in Bale in particular in terms of favorable environmental conditions. Development of appropriate agronomic practices like seeding rate and nitrogen

management is among the intervention areas where a research centers play a great role. So far, there was no information generated on varietal differences in response to different seeding and nitrogen fertilizer rates as well as their interaction effects to optimize malt barley quality and quantity of production in bale highlands. This project is, thus, initiated to fill the information gap with objective of interaction effects of nitrogen fertilizer and seed rate with respect to cultivars for the desired malt barley yield and quality.

The rising market demand for malt barley appears a bright venture for farmers as well as others involved in commercial farming. The favorable environmental condition for production of the crop is another opportunity prevailing in Bale. Despite this, integrated agronomic management practices including seeding and fertilizer rate for the varieties are lacking in the area to optimize malt barley production in terms of yield and grain quality. These calls for an urgent need to determine integrate effects of seeding and nitrogen fertilizer rates along with improved varieties in order to optimize yield and grain quality.

### **Objectives**

- ✓ To determine the effects of seed and nitrogen rate on yield, yield related traits and grain quality of improved malt barley varieties
- ✓ To determine economically optimum N application rate for higher grain yield and quality of Malt barley

## **2. Materials and Methods**

The experiment was conducted for three years (2016-2018) at three locations (Sinana on-station, Goba and Dinscho) in main cropping season. The experimental design in all locations was a split-plot with three replications. Two malt barley varieties (Grace and Traveler) were randomly assigned as main plot factor. On the other hand, factorial combinations of three seeding rates (100,125 and 150 kg ha<sup>-1</sup>) and four levels of nitrogen fertilizer (0, 23, 46 and 69 kg N ha<sup>-1</sup>) were arranged in sub-plot factors. The entire arrangement of treatments (2x3x4) twenty four treatment combinations were replicated three times. The size of each plot was (1.8x2.5m=4.5m<sup>2</sup>) and the distance between plots and blocks is kept at 0.5 m and 1.5 m respectively. Field activities such as land preparation, weeding was carried out accordingly. Planting was done using row planting, phosphorous fertilizer in the form of TSP at the recommended rate of 69 kg P2O5 ha<sup>-1</sup> was applied equally for all plots. The highest rates of Nitrogen were splitted to 1/3 at planting and 2/3 at tillering.

## **3. Statistical Data Analysis**

Analysis of variance (ANOVA) was done using Gen Stat 15th edition and means comparisons for the significantly different variables were made among treatments using least significant differences (LSD) test at 0.05 level of significance.

## **4. Results and Discussion**

### **4.1. Soil analysis before planting**

Selected physico-chemical properties of the soil were determined for composite surface soil (0-30 cm) samples collected before sowing (Table1). Accordingly, the texture of the soil of the experimental site is dominated by the clay fraction. The clay texture indicates the high degree of weathering that took place in geological times and the high nutrient and water holding capacity of the soil.

Soil pH values for both locations varied from 5.68 to 6.45 for soils of the experimental sites (Table 1). pH status was categorized as moderately to slightly acidic soil Jones (2003). Based on these results the pH value is optimum range for most crop production since most plant prefer the pH range 5.5 to 7.0. Soil Organic matter values for both locations varied from 2.29 to 4.98 for soils of the experimental sites (Table 1). As the rating range established by Tekalign,(1991) soil organic matter content categorized under low to moderate for Dinscho on-farm and Sinana on- Station, respectively. Soil Total Nitrogen values for both locations varied from 0.17 to 0.33. As ratings suggested by Landon (1991) for soil total nitrogen soils of the experimental site were rated into low and moderate for Dinscho on-farm and Sinana on- station, respectively. Available Phosphorous values for both locations varied from 10.54 to 20.58 (Table1). According to the rating established by Cottenie (1980) the studied soils have

moderate to high phosphorus content for Dinsho on-farm and Sinana on-station, respectively. Adequate phosphorus results in higher grain production, improved crop quality, greater stalk strength, increased root growth, and earlier crop maturity.

Cation exchange capacity values were ranged from 20.45 to 38.53 for soils of the experimental sites. Based on the rating established by Hazelton (2007) the soil of the study sites were moderate and high for Dinsho on-Farm and Sinana on-station, respectively.

**Table 1**

Soil physico-chemical properties of the Sinana on-station and Sinana on-farm.

| Location          | Textural class | pH   | OM (%) | TN (%) | Available P (ppm) | CEC (cmol kg <sup>-1</sup> ) |
|-------------------|----------------|------|--------|--------|-------------------|------------------------------|
| Sinana on-station | Clay           | 6.45 | 4.98   | 0.33   | 20.58             | 38.53                        |
| Dinsho on-farm    | Clay           | 5.68 | 2.29   | 0.17   | 10.54             | 20.45                        |

#### 4.2. Grain yield

Analysis of variance indicated that seeding rate and nitrogen rate interacted to significantly influenced ( $P < 0.05$ ) the grain yield of improved malt barley varieties (Table 2).

The interaction effect of seeding rate and nitrogen rate significantly influenced the grain yield of the malt barley varieties. The grain yields from all seeding rates increased significantly and variably across the increasing rates of the nitrogen fertilizer. The grain yields also increased across the increased seeding rate for all nitrogen levels. The highest grain yield (3957 kg ha<sup>-1</sup>) was obtained at the highest seed rate (150 kg ha<sup>-1</sup>) and nitrogen rate (69kg N ha<sup>-1</sup>). The second highest grain yield (3702 kg ha<sup>-1</sup>) was recorded at (125kg ha<sup>-1</sup>) and (69kg N ha<sup>-1</sup>) in statistical parity with (150kg ha<sup>-1</sup>) and (46 kg N ha<sup>-1</sup>). The lowest grain yield (1905kg ha<sup>-1</sup>) was produced from the interaction effects of the lowest seed rate (100kg ha<sup>-1</sup>) and the control (0 kg N ha<sup>-1</sup>).

**Table 2**

Interaction effect of seeding and nitrogen rate on grain yield of improved malt barley varieties.

| Seeding rate(kg ha <sup>-1</sup> ) | Nitrogen rate(kg N ha <sup>-1</sup> ) |        |       |        |      |
|------------------------------------|---------------------------------------|--------|-------|--------|------|
|                                    | 0                                     | 23     | 46    | 69     | Mean |
| 100                                | 1905i                                 | 2378g  | 2663f | 2878de | 2456 |
| 125                                | 2165h                                 | 2704ef | 3365c | 3702b  | 2984 |
| 150                                | 2369g                                 | 2898d  | 3597b | 3957a  | 3205 |
| Mean                               | 2146                                  | 2660   | 3208  | 3512   |      |
| LSD=183.6 CV(%)=15.9               |                                       |        |       |        |      |

Means with the same letter are not significantly different at 5% level of significance; NS= non-significant; LSD=Least Significant Difference at  $P < 0.05$ ; CV% = Coefficient of variation (%).

#### 4.3. Plant height

The analysis of variance showed that the main effects of nitrogen rate differed significantly ( $P < 0.05$ ) in plant height. However, the main effect of seeding rate and the interaction effect did not influence plant height (Table3).

The highest nitrogen rate 69 kg N ha<sup>-1</sup> recorded the highest plant height 67.7cm in statistical parity with 46 kg N ha<sup>-1</sup>. The lowest was obtained from the control treatment 0 kg N ha<sup>-1</sup> in statistical parity with the lowest rate 23 kg N ha<sup>-1</sup>. The increased plant height in response to increasing the rate of nitrogen application was probably due to the availability of more nitrogen in the soil, which may have promoted vegetative growth of the barley plants.

#### 4.4. Bio-mass yield

Analysis of variance indicated significant differences ( $P < 0.05$ ) for main effects of seeding and nitrogen rate in biomass yield (Table 3).

Increasing the seeding rate proportionally increased biomass production. The highest bio-mass yield 7993 kg ha<sup>-1</sup> was obtained from the highest seeding rate 150 kg ha<sup>-1</sup>. The lowest 6299 kg ha<sup>-1</sup> was obtained from the lowest seeding rate 100 kg ha<sup>-1</sup>. Similarly, nitrogen rate increase proportionally the bio-mass yield. The highest (8614 kg ha<sup>-1</sup>) was recorded with the highest nitrogen rate (69 kg N ha<sup>-1</sup>), the lowest (5671 kg ha<sup>-1</sup>) was by the control(Table1 ). These results indicate that the varieties responded to the N fertilizer application variably in terms of biomass production. The result is in agreement with the findings of Amanuel et al. (1991) who reported a significant increase in biomass yield as a result of increasing in the rate of nitrogen application.

#### 4.5. Thousand Kernel weight and grain protein content

The result showed significant differences ( $P < 0.05$ ) among nitrogen rate treatments and seeding rate for TKW and nitrogen rate for grain protein content while their interaction was non-significant (Table3).

The seeding rate treatments caused a slight increase in TKW .The maximum TKW was observed for treatment 150kg ha<sup>-1</sup> (39.2 g) which was statistically at par with 125 kg ha<sup>-1</sup>.The lowest (37.1g) was recorded with the lowest seeding rate (100kg ha<sup>-1</sup>).Increasing nitrogen levels proportionally increased thousand kernel weight and grain protein content which was statistically differed and varied from each other (Table 1). The highest TKW (40.2 g) was obtained at the highest nitrogen rate (69kg N ha<sup>-1</sup>). The lowest (36.1g) was recorded by the control treatment. Similarly, the highest grain protein content (12.2%) was obtained at the highest rate (69kg N ha<sup>-1</sup>). The lowest (9.2%) was recorded by the control treatment. This might be attributed to a better nutritional status of the plants which resulted in good grain filling and development.

**Table 3**

Seeding and nitrogen rate effect on selected agronomic traits and quality of improved malt barley varieties.

| Treatments                     | PH(cm) | SL(cm) | KPS  | BM(kg) | HI (%) | TKW(g) | HLW(kg hl <sup>-1</sup> ) | GPC (%) |
|--------------------------------|--------|--------|------|--------|--------|--------|---------------------------|---------|
| <b>Variety</b>                 |        |        |      |        |        |        |                           |         |
| Grace                          | 66.4   | 8.3    | 28.5 | 7149   | 0.41   | 38.3   | 68.0                      | 10.7    |
| Traveller                      | 65.3   | 8.2    | 28.3 | 7211   | 0.43   | 38.5   | 67.9                      | 10.6    |
| LSD( $P < 0.05$ )              | NS     | NS     | NS   | NS     | NS     | NS     | NS                        | NS      |
| <b>Seeding rate(kg/ha)</b>     |        |        |      |        |        |        |                           |         |
| 100                            | 66.1   | 8.3    | 28.6 | 6299c  | 0.41   | 37.1b  | 67.7                      | 10.7    |
| 125                            | 65.1   | 8.3    | 28.3 | 7249b  | 0.43   | 38.8a  | 67.9                      | 10.7    |
| 150                            | 66.3   | 8.1    | 28.1 | 7993a  | 0.41   | 39.2a  | 68.3                      | 10.6    |
| LSD( $P < 0.05$ )              | NS     | NS     | NS   | 304    | NS     | 0.5    | NS                        | NS      |
| <b>Nitrogen rate (kg N/ha)</b> |        |        |      |        |        |        |                           |         |
| 0                              | 63.7c  | 8.1    | 27.9 | 5671d  | 0.40   | 36.1d  | 67.5                      | 9.2d    |
| 23                             | 65.2bc | 8.1    | 28.3 | 6761c  | 0.43   | 37.7c  | 67.8                      | 10.2c   |
| 46                             | 66.6ab | 8.3    | 28.4 | 7674b  | 0.42   | 39.5b  | 68.1                      | 10.9b   |
| 69                             | 67.7a  | 8.4    | 28.7 | 8614a  | 0.41   | 40.2a  | 68.4                      | 12.2a   |
| LSD( $P < 0.05$ )              | 1.6    | NS     | NS   | 351    | NS     | 0.58   | NS                        | 0.15    |
| Mean                           | 65.8   | 8.2    | 28.3 | 7180   | 0.42   | 38.4   | 67.95                     | 10.0    |
| CV (%)                         | 10.6   | 15.4   | 10.3 | 21.1   | 27.7   | 6.6    | 4.3                       | 6.0     |

N=Nitrogen; PH=Plant height; SL=Spike length; KPS=Kernels per spike; BM=Bio-mass; TKW=Thousand kernel weight; HLW=Hectoliter weight; HI=Harvest index; P (%) =Protein in percentage; Means with the same letter are not significantly different at 5% level of significance; NS = non-significant; LSD = Least significant difference at  $P < 0.05$ ; CV (%) = Coefficient of variation (%).

#### 4.6. Economic analysis

The economic analysis was based on the procedures by CIMMYT (CIMMYT, 1988). Partial budget and marginal analysis were performed for nitrogen fertilizer and seeding rate and the decision for selecting the profitable treatments were made based on the highest marginal rate of return (Table4& 5). The Marginal analysis indicated that for nitrogen rate changing from the second treatment (23 kg N ha<sup>-1</sup>) to the third treatment (46 kg N ha<sup>-1</sup>) has resulted the highest marginal rate of return (350%), which means that investing 1 birr in treatment number three acquire a return of 3.50 birr. The marginal analysis for seeding rate also revealed that treatment number two (125kg ha<sup>-1</sup>) gave the highest marginal rate of return (1713%). There for, the best nitrogen and

seeding rate for malt barley productivity and profitability in the high lands of bale are 46 kg N ha<sup>-1</sup> and 125 kg/ha, respectively.

**Table 4**

Partial budget analysis result for nitrogen rate study on Malt barley varieties.

| Treatments (Nitrogen kg/ha)                      | 0     | 23    | 46    | 69    |
|--------------------------------------------------|-------|-------|-------|-------|
| Average yield(kg/ha)                             | 2146  | 2660  | 3210  | 3515  |
| Adjusted yield(kg/ha)                            | 1931  | 2394  | 2889  | 3164  |
| Gross field benefits(Birr/ha)                    | 23172 | 28728 | 34668 | 37968 |
| Cost of Nitrogen(Birr/ha)                        | 0     | 750   | 1500  | 2250  |
| Cost of labour to apply Nitrogen (Birr/ha)       | 0     | 35    | 35    | 70    |
| Harvesting, packing and transportation (Birr/ha) | 2221  | 2753  | 3322  | 3639  |
| Total costs that vary(Birr/ha)                   | 2221  | 3538  | 4857  | 5959  |
| Net benefits (Birr/ha)                           | 20951 | 25190 | 29811 | 32009 |
| MRR%                                             | 322   | 350   | 199   |       |

Cost of urea 1500 Birr 100 kg-1 or (32.60 Birr kg<sup>-1</sup> N); urea application cost of 23,46 kg N ha<sup>-1</sup> one person@ 35 Birr /day; 69 kg N ha<sup>-1</sup> two person@ 35 Birr /day; harvesting, packing and transportation 115 Birr per 100 kg; sale price of malt barley 1200 Birr per 100 kg.

**Table 5**

Partial budget analysis result for seeding rate study on Malt barley varieties.

| Treatments (Seedrate kg/ha)         | 100   | 125   | 150   |
|-------------------------------------|-------|-------|-------|
| Average yield(kg/ha)                | 2456  | 2984  | 3205  |
| Adjusted yield(kg/ha)               | 2210  | 2686  | 2885  |
| Gross field benefits(Birr/ha)       | 26520 | 32232 | 36620 |
| Cost of barley(Birr/ha)             | 1200  | 1500  | 1800  |
| Sowing and transportation (Birr/ha) | 50    | 65    | 80    |
| Total costs that vary(Birr/ha)      | 1250  | 1565  | 1880  |
| Net benefits (Birr/ha)              | 25270 | 30667 | 34740 |
| MRR%                                | 1713  | 1293  |       |

Sowing and transportation cost 50 Birr per 100 kg; sale price of malt barley 1200 Birr per 100 kg (12 birr/kg).

## 5. Conclusion and Recommendations

An experiment was conducted with the objectives of assessing the effect of seeding and nitrogen rate on grain yield, yield components and grain protein accumulation of malt barley varieties. The experimental design was a split-plot with three replications. Two malt barley varieties (Grace and Traveler) assigned as main plot factor and factorial combinations of three seeding rates (100,125 and 150 kg ha<sup>-1</sup>) and four levels of nitrogen(0, 23, 46 and 69 kg N ha<sup>-1</sup>) were assigned as sub-plot Factors. The results of the experiment revealed that seeding and nitrogen rate significantly influenced some important malt barley agronomic traits and grain quality attributes.

Therefore, from the results of three years' data over locations, it was observed that the second seeding rate (125kg ha<sup>-1</sup>) and the second nitrogen rate (46 kg N ha<sup>-1</sup>) were the most promising and economically feasible seeding and nitrogen rate for the two malt barley varieties (Grace and Traveler).Malt barley producing Farmers advised to use 125 kg ha<sup>-1</sup> seed rate and 46 kg N ha<sup>-1</sup> fertilizer rate to realize maximum grain yield and grain quality of the crop.

## Acknowledgements

The authors are grateful to all staff of the Sinana Agricultural Research Centre especially those in the Cereal Crops Technology Generating Team for valuable contributions in data collection. Oromia Agricultural Research Institute is acknowledged for financing the experiment.

## References

Ayoub, M., Guretin, S., Fregeau-Reid, J., Smith, D.L., 1997. Nitrogen fertilizer effect on Bread making quality of hard red spring wheat in Eastern Canada. *Sci.*, 34, 1347-1352.

Costa, J.M., Bodlero, G., 2001. Annals applied biology. 139(1), 137-143.

Dudas, F., 1994. Grain quality of barley cv. Perun under different cultivation practices. *Acta Univ. Agr. Fac. Agron.*, 42(1/2), 149-159.

Edney, M., 2008. The effect of agronomic practices on malt quality parameters.

Laure, J., Partridge, J., 1990. Planting date and nitrogen rate effects on spring malting Barley. *Agron. J.*, 82, 1083-1088.

Leisrumaite, A., Paplauskienė, V., 2005. Genetic resources of malt barley: Screening for yield stability and grain malt quality traits.

Metho, A.L., Hammes, P.S., De. Beer, J.M., 1997. Effect of cultivars and soil fertilization on grain yield, yield components and grain protein content in wheat. *Afr. Crop. Sci. J.*, 3(2), 695-706.

Onwueme, I.C., Sinha, T.D., 1999. Field crop production in tropical Africa: Principle and practice. CTA, Wageningen, Netherlands.

Weston, D., Horsely, R., Schwarz, P., Goos, R., 1993. Nitrogen and planting date effects on low-protein spring malting barley. *Agron. J.*, 85, 1170-1174.

**How to cite this article:** Bogale, M., Alemi, J., 2025. Effects of seeding and nitrogen rate on yield, yield related traits and grain quality of malt barley varieties in the highlands of Bale. *Pure and Applied Science Advances*, 13(1), 1-7.

**Submit your next manuscript to Sjournals Central and take full advantage of:**

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in DOAJ, and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at  
[www.sjournals.com](http://www.sjournals.com)

