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A B S T R A C T 

 

Soil aggregate is one of the most important soil properties 
governing most of the physical, chemical, hydrological and biological 
properties of soils. Also soil particle size distribution (PSD) is one of 
the fundamental physical properties affecting aggregate stability. 
Characterizing the variation of both properties is very important in 
environmental research. The objective of this study was to assess 
effects of (PSD) on soil aggregates stability (i.e. MWD) and to 
compare spatial pattern these properties at agricultural field in North 
of Iran. From the study area 75 soil samples were sampled by a 
systematic sampling strategy at 0 to 30 cm depth below the surface 
on a regular grid spacing of 10m×10m and transported to laboratory. 
Soil mean weight diameter (MWD) was negatively correlated with silt 
(-0.424; p < 0.01) and positively correlated with clay (+0.454; p ˂ 
0.01). The semivariograms analysis showed moderate to strong 
spatial dependency for all soil properties. The soil properties with 
strong spatial correlations were clay and silt content, whereas sand 
and MWD were moderately correlated. The range spatial 
dependence for soil properties varied from 31m for MWD to 58m for 
silt content. The results showed that areas with higher silt and clay 
are always associated with the lower and higher MWD, respectively. 
Therefore we assume that the areas associated with the lower clay 
might be due to the effect of soil erosion or leaching in rainy season. 
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1. Introduction 

Soil aggregates are formed and stabilized by means of physical, chemical and biological processes, which can 
vary from one location to another location within a landscape. Variation in soil aggregate stability in the field 
directly contributes to the variation in the hydrological properties, porosity, soil structure, soil permeability and 
compaction of soil layers (Baumgartl and Horn, 1991; Kjaergaard et al., 2004). Furthermore, Aggregate stability is 
considered to be one of the main soil properties regulating soil erodibility (Cerda, 1998). When soil aggregates 
break down, finer particles are produced, which are easily carried away by wind and water flow and which upon 
re-sedimentation tend to clog soil pores, leading to the formation of soil crusts (Kirkby and Morgan, 1980; Yan et 
al., 2008). While variation of some physiochemical soil process affected by aggregate stability, other such as soil 
texture, organic content, clay mineralogy, and the presence of chemical dispersing agents, may influence 
aggregate stability (Silva and Mielniczuk, 1998; Canasveras et al., 2010). For example, Soil texture especially clay 
content is known to have a significant relationship with aggregate formation and stabilization. This relationship 
could be reciprocal in the sense that soil particle size distribution is critical for aggregate formation and 
stabilization. Soil aggregation as influenced by higher clay content was the most important soil property 
influencing the soil loss by splash (Luk, 1979). Various indicators have been proposed to characterize soil aggregate 
stability such as the geometric mean diameter (GMD), mean weight diameter (MWD), water-stable aggregation 
(WSA), and aggregate stability index (ASI)  (Calero et al., 2008). However, there is no universal prescription as to 
which of these methods should be preferred or used for specific cases.    

The degree of spatial variability for each variable can be determined by geostatistical methods using 
semivariogram model (McBratney and Pringle, 1999). Also geostatistics is a useful tool for analyzing the structure 
of spatial variability, interpolating between point observations, and creating the map of interpolated values with 
an associated error map. Several attempts have been made to characterize the spatial dependency of soil 
properties and kriged maps of different soil properties are presented for scales ranging from a few meters to 
several kilometers (Sun et al., 2003; Lin et al., 2005; Juan et al., 2011; Tesfahunegn  et al., 2011; Motaghian and 
Mohammadi, 2012). During the last two decades it has been widely used in various subfields of soil science such as 
soil reclamation, soil classification and soil pollution studies. The objectives of this paper are to: i) to analyze and 
describe the spatial variable pattern of aggregate stability (MWD) and particle size distribution (PSD) on the top 
30cm of the soil; and, ii) to display the variability pattern of these properties through the predicted maps. 

2. Materials and methods 

2.1. Study design and field sampling 

Research was conducted in in a near flat agricultural field (2-3% Slope) of about 1ha (90 m×90 m) located in 
Rasht, Guilan provenance, North of Iran. This field was covered by vegetation and this vegetation has been 
removed by tillage practices and the field has been remained uncultivated for nearly 3 years. The climate is 
temperate with a mean annual temperature of 15.5 ˚C. Mean annual precipitation is 1200 mm with bimodal 
maxima in October and November. 

A 90m ×90m plot consisting of 10m × 10m grid cells was established in 2012 (Figure.1). Three repeat were 
collected randomly from 0-30 cm depth around in each of the 75 point. The particle size distribution (PSD) of soil 
samples i.e., sand, silt, and clay content was done with a combination of the hydrometer and the wet sieving 
method as described by Gee and Bauder (1986). The size distributions of particles greater than 75 μm in diameter 
were determined by wet sieving. Particles smaller than 75 μm were analyzed using the hydrometer test method. 
The soil samples for aggregate stability assessment were taken to the laboratory in such a way that minimum 
structural destruction occurred. Following van Bavel (1950) method, as modified by Kemper and Rosenau (1986), 
was used to parameterize the mean weight diameter (MWD) of wet-sieved aggregates. The MWD (mm) of water-
stable aggregates was calculated using the following equation: 
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Where xi is the mean diameter of each size-fraction i, and wi is the proportion of the total sample weight 
occurring in the size fraction i. 

2.2.Statistical and geostatistiacal analysis 

Descriptive statistics were computed with SPSS 18 (SPSS Inc., Chicago, IL, 2010). To test the hypothesis of 
normality, standard error of skewness for each property was conducted (Balasudram et al., 2008). Pearson 
correlation coefficients and T-test were calculated for all possible variable pairs to generate a correlation matrix 
(Bai et al., 2012). To evaluate the spatial structure of the properties, a semivariogram was used which represents 
the relationship between the lag or any integral multiple of the sampling interval and the semi- variance 
(Goovaertes, 1997). Theoretically, a variogram can be calculated as equation (2): 
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Where Z(xi) and Z(xi+h) are sample values at two point separated by the distance h, and N(h) is the number of 
pairs separated by lag distance, within the distance interval h. Generally, semivariogram consists of three basic 
parameters including the nugget effect, the sill and the range. The nugget effect is a local variance component 
occurring at scales finer than the shortest sampling interval. The sill represents the total variance and range 
determines the distance, which beyond that distance the values of the variable considered as not correlated. The 
theoretical models were fitted to experimental variograms. The selection of appropriate model was based on 
qualitative interpretation of which model best represented the overall behavior of the experimental 
semivariogram. The model parameters were calibrated based on a minimization of residual sum square (RSS) and 
highest (r2) between the fitted and computed values. We used each experimental semivariogram for constructing 
contour maps of the interpolated variable. In such a case, ordinary kriging was considered as the most suitable 
working tool (Millan et al., 2012): 
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Where Z* is the estimated ordinary kriged values of Z at X0 location, and λi refer to weighing factors such 
that: 
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Accuracy of the kriging maps was evaluated through a cross-validation process using the using root mean 
square error (RMSE), The RMSE statistics are defined as (Besalatpour et al., 2013):  

(5)                                                                                       
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Where P(xi) denotes the predicted value of observation i, M(xi) is the measured value of observation i, and n 

is the total number of observations. The software packages GS+ 5.1 (Gama Design, 2001) was also used for 
geostatistical analysis and mapping spatial distribution. 

3. Results and discussion 

Table 1 shows the main descriptive statistics for each of soil properties. According to the standard error of 
skewness, Silt content and MWD  had lower skewness and were normally distributed, clay content showed slightly 
deviation from normality and sand contents were abnormally therefore, sand was transformed by using natural 
logarithm method to a normal distribution. Based on the entire data set, coefficients of variation for soil properties 
ranged from 7.2% for silt content to 31.2% for MWD. In general the use of the CV is a common procedure to assess 
variability in soil properties since it allows comparison among properties with different units of measurement. 
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Among the soil properties, MWD showed a higher CV value of 31.2%. Soil texture usually shows low spatial 
variability. In this soil, the silt CV was low as compared to the other measured particle soil distance. It could be due 
to the larger amount silt content as compared to clay and silt content .According to Vanni (1998), a CV of over 35 % 
shows that the data set is heterogeneous and the mean is little relevant. If it is over 65 %, the data set is highly 
heterogeneous and the mean insignificant. However, if it is less than 35 %, the data set is homogeneous, the mean 
significant and it can be used as representative of the original data set. 

 
Table 1 
Summary Statistics for the original variable. 

CV 
(%) 

Kurtosis Skewness SD Mean Max Min unit Variable 

31.20 -0.82 -0.07 0.47 1.3 2.3 0.6 mm MWD 

16.91 0.47 0.58 5.29 32.0 48.0 22.0 % Clay 

7.26 -0.39 0.34 4.33 59.7 70.0 51.0 % Silt 

31.10 0.15 0.74* 2.86 9.2 18.0 5.0 % Sand 
*significant at the 0.05 probability level; SD: Standard   deviation; 
 CV: Coefficient of variation. 

 
 
 
 
 
 
 
 
 
 
 
 
 

The liner correlation coefficients between PSD and MWD were statistically significant in the case of silt and 
clay content.  Also no-significant relationships were found between MWD and sand. Soil MWD was negatively 
correlated with silt (-0.424; p < 0.01) and positively correlated with clay (+0.454; p ˂ 0.01). Similarly, Levy and 
Miller (1997) reported very comparable correlations between aggregate stability and clay content.   

Soil variables showed differences in spatial dependence as determined by semivariance analysis (Tables 3). 
The spherical model was adjusted to the data of all studied variables base on minimum RSS and highest regression 
(Figure. 2). Semivariance increased with distance between samples (lag distance) to a constant value (sill or total 
variance) at a given separation distance (the range of spatial dependence) for spherical model (Isaaks and 
Srivastava, 1989). The parameters semivariograms of selected soil variables are shown in (Table3). To define the 
degree of spatial dependency, spatial class ratios similar to those presented by Cambardella et al. (1994) were 
adopted. That is the ratio of nugget variance (noise) to total variance (sill) multiplied by 100. If the ratio of spatial 
class was less than 25% then the variable is considered to be strongly spatially dependent; if the ratio was between 
25% and 75%, the variable was regarded as moderately spatially dependent; and if the ratio was more than 75%, 
the variable was considered weakly spatially dependent. The fitted semivariograms indicated the existence of 
moderate to strong spatial dependency for all soil properties. Among all variables, semivariogram of silt with large 
and intermediate represented the strong spatial dependency, which suggested that these variables showed a 
considerable spatial dependence within sampling distances. However, MWD semivariogram showed high ratio of 
nugget variance to total variance (sill). Spatially dependent variables may be controlled by intrinsic variations in 
soil. therefore, in this study, soil variables for spherical models were spatially correlated at all lag distances greater 
than the minimum grid spacing distances, and All soil variables had a range and did not randomly distributed. 

Table 2 
Liner correlation between soil properties. 

MWD Clay Silt Sand Variable 

-0.148 -
0.492*

* 

-0.146 1 Sand 

-0.424** -
0.810*

* 

1  Silt 

0.454** 1   Clay 
**significant at the 0.01 probability level. 
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The range of influence is considered to the maximum distance up to which two sample points in the study 

area remain correlated. Beyond the range, the average rate of change becomes independent of the separation 
distance important for finding the minimum sampling distance for the evaluation of sampling design and mapping 
of soil properties (Utset et al., 2000; Fu et al., 2010). The range spatial dependence for soil properties varied from 
31m for MWD to 58m for silt content. The different ranges of the spatial dependence among the soil properties 
may be attributed to differences in response to the erosion–deposition factors, land use-cover, topography, parent 
material and human and livestock interferences (Tesfahunegn et al., 2011). Range values of silt, and clay content 
were larger than that of range values of sand, and MWD. According to Ayoubi et al. (2007), a large range indicates 
that the measured soil parameter value is influenced by natural and anthropogenic factors over greater distances 
than parameters which have smaller ranges. Similar result were reported by Motaghian and Mohammadi (2012), 
they reported MWD variograms showed high ratio of nugget variance to total variance (sill) for the aggregate size 
fractions. Therefore, a definite and positive range for semivariograms showed that the most attributes were not 
completely random at the scale of sampling and measurement.  
 

 
Fig.1. The distribution of representative soil sampling points in the study field. 

 
The spatial predictions of soil properties in the study area are shown in (Figure. 3). For all soil variables, the 

root mean standard errors of the predictions (table 3) are less and indicating that the resulting spatial predictions 
obtained kriging techniques can be trusted. Measured soil properties exhibited differences in their spatial patterns 
in each soil properties. Furthermore, the spatial pattern MWD (Fig. 3(a)) is approximately consistent with the 

Table 3 
Values of model parameters used to find the best semivariogram to predict soil parameter. 

RMSE Range 
(m) 

R2 RSS Class C0/(C+C0
) 

C0+C C0 model Variable  

0.442 31 0.8
5 

2.6×10-
4 

M 53.0 0.1660 0.0880 spherica
l 

MWD 
(mm) 

3.196 53 0.9
9 

5.1×10-
6 

S 3.4 0.0372 0.0013 spherica
l 

Clay (%) 

3.257 58 0.9
9 

0.930 S 16.4 20.450 3.3600 spherica
l 

Silt (%) 

2.271 37 0.9
7 

1.2×10-
4 

M 26.0 0.1380 0.0360 spherica
l 

Sand (%) 

C0: nugget effect; C0+C: sill; RSS: residual of some square; DSD: degree of spatial dependence (C0/C+C0); 
 M: moderate; S: strong; G: goodness of prediction statistics. 
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spatial Pattern of silt (fig. 3(c)) and clay (Fig. 3(b)) content in the field. However, spatial patterns for sand content 
also differed with spatial pattern MWD and sand content was distributed patchy in this study. Figures 3(b) suggest 
that the entire study area is characterized by a low to moderate level of clay content from east to west with only 
few small areas which are rich in clay. Although the spatial variability of sand content was appears in patchier. 
Moreover, the areas with higher silt are always associated with the lower MWD. Clay and silt content are found to 
be highly correlated (with a negative correlation coefficient, r = -0.81). We assume that the areas associated with 
the lower clay might be due to the effect of soil erosion or leaching in rainy season (which removed the easily 
detachable soil clay leaving behind the course grains on the surface). Kriging interpolation predicted higher values 
of MWD at the field (western part) which is due to the influence of higher clay and lower sand content. The 
estimated soil MWD had the highest values in the western. The lowest values of the soil MWD were from the 
eastern. The highest values of the measured soil clay content occurred mainly in the western and rarely as a point 
place in any other area. MWD had high values in the western side of fields, indicating that significant rates of soil 
clay content in this portion, whereas it had low values in the east side (fig. 3(a)). MWD values were more variable 
in east–west direction compared to that in north–south direction.  

 
Fig.2. Experimental semivariograms of (a) MWD, (b) Clay, (c) Silt, (d) Silt. 

 

 
Fig.3. Spatial Patterns of (a) MWD (mm), (b) Clay (%), (c) Silt (%), (d) Sand (%). 

4. Conclusions 
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This study has elucidated the spatial patterns and variations in soil aggregate stability related to particle size 
distribution. The clay and silt content has been found to be one of the main factors controlling the mean weight 
diameter in these soils, however no significant relationships were found between the sand content and the mean 
weight diameter. Range values of the above mentioned soil properties were generally greater than 31 m. 
Consequently, soil sampling distance of these properties for practical sampling purposes could be taken separated, 
as 31 m. The results of this study thus generalized that soil properties with a strong to moderate spatial structure 
can predict relatively accurate soil properties maps. Spatial patterns for sand content differed with spatial pattern 
MWD and sand content was distributed patchy in this study. Whereas the spatial pattern MWD is approximately 
consistent with the spatial Pattern of silt and clay content in the field. The results of the geostatistical analyses can 
be applied in making decisions regarding environmental monitoring, remediation, land management and planning. 
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