Objective bayesian analysis for the gompertz distribution under doudly type II cesored data
Keywords:
Inverse transformation method;Doubly censored samples;Loss functions;Posterior predictive distributions;Credible intervalsAbstract
Trimmed samples are widely utilized in several areas ofstatistical practice, especially when some sample values at either or bothextremes might have been adulterated. In this article, the problem ofestimating the parameter of Gompertz distribution based on trimmed samplesunder informative and non-informative priors has been addressed. The problemdiscussed using Bayesian approach to estimate the parameter of Gompertzdistribution. We have examined Bayes estimates under symmetric and asymmetricloss functions. The explicit expressions for estimator and risk are developedunder all loss functions. Elicitation of hyperparameter through priorpredictive approach is also discussed. Posterior Predictive distributions andCredible Intervals are also derived under different priors. The influence ofparametric value on the estimate and risk is also discussed. Finally, to assessthe performance of the estimators, numerical results using Monte Carlosimulation study were reported.References
Bansal, A. K., 2007. Bayesian Parametric Inference. Narosa Publishing House Pvt.Ltd.
Bolstad, W. M., 2004. Introduction to Bayesian Statistics. John Wiley and Sons. Inc.
Feroze, N., Aslam, M., 2012. Bayesian analysis of Gumbel type II distribution under doubly censored samples using different loss functions. Caspian J. Appl. Sci. Res., 1(10), 1-10.
Gompertz, B., 1825. On the Nature of the Function Expressive of the Law of Hu-man Mortality, and on a New Mode of Determining the Value of Life Contingencies. Philosoph. Trans. Roy. Soci. London., 115, 513-585.
Gordon, N.H., 1990. Maximum likelihood estimation for mixtures of two Gompertz distribution when censoring occurs, Communicat. Statist-Simulat. Comput., 19, 733–747.
Grimshaw, S D., Collings, B J., Larsen, W A., Hurt, C. R., 2001. Eliciting Factor Importance in a Designed Experiment. Technometrics. Vol., 43, 2, 133-146.
Jaheen Z.F., 2003. A Bayesian analysis of record statistics from the Gompertz model. Appl. Math. Comput., 145( 2), 307-320.
Jenkinson, D., 2005. The elicitation of probabilities: A review of the statistical literature, Depart. Probab. Stat., University of Sheffield.
Kadane, J. B., 1980. Predictive and Structural Methods for Eliciting Prior Distributions. Bayesian Analysis in Econometrics and Statistics (ed. A. Zellner). Amsterdam. North-Holland.
Kadane, J. B., Wolfson., 1996. Experience in elicitation. The Statistician, 47,1-20.
Leon, J. C., Vazquez-Polo, J. F. and Gonzalez, L.R. (2003). Environmental and ResourceEconomics. Kluwer Academic Publishers., 26, 199-210
Meniconi, M., Barry, D. M., 1996. The power function distribution : a useful and simple distribution to assess electrical component reliability. Microelectron. Reliab., 36(9), 1207-1212.
O'Hagan, A., Buck, C. E., Daneshkhah, A., Eiser, J. E., Garthwaite, P. H., Jenkinson, D. J., Oakley, J. E., Rakow, T., 2006. Uncertain Judgements: Eliciting expert probabilities. John Wiley & Sons.
Saleem, M., Aslam, M., 2009. On Bayesian analysis of the Rayleigh survival times under assuming the Rayleigh censor time. Pak. J. Statist., 25, 71-82.
Sindhu, T. N., Feroze, N., Aslam, M., 2013. Bayesian Analysis of the Kumaraswamy Distribution under Failure Censoring Sampling Scheme. Int. J. Adv. Sci. Technol., 51, 39-58.
Soliman,A.A., Abd-Ellah, A. H., Abou-Elheggag, N. A., Abd-Elmougod, G. A., 2012. Estimation of the parameters of life for Gompertz distribution using progressive first- failure censored data. Comput. Stat. Data Anal., 56(8), 2471-2485.
Wu, S.J., Chang, C.T., Tsai, T.R., 2003. Point and interval estimations for the Gompertz distribution under progressive type-II censoring. Metron., 61, 403–418.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 T. N. Sindhu, M. Aslam
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.