The applications of wireless sensor networks in military environments
Keywords:
Wireless sensor networks, Military areas, Secure data, Data aggregationAbstract
Nowadays, I have to find methods and new weapons on the battlefield to enhance the military capability that the most important is increasing of power in electronic wars. Maybe in the past, many soldiers on the battlefield, commanded of strong of the commanders, increase the military strength of a country and use of new techniques on the battlefield, caused which we win but nowadays all of them have been affected by electronic wars. With the help of sensor networks on the battlefield, we can obtain much information on many war fronts. (For example, Battlefield simulation, enemy's front simulation, espionage, movement control and surveillance in the region, number of enemy soldiers). We can distribute smart dusts (like of mica particles) by planes or missiles. Then we can analyze all of information with the help of special software. In this research I have tried to explore the challenges involved in military environments. At the end to solve the existing problems, I have presented solutions with the help of wireless sensor networks.
References
Nallusamy, R., Duraiswamy, K., 2011. Solar Powered Wireless Sensor Networks for Environments Applications with Energy Efficient Routing Concepts. Informat. Technol. J., volume 10,pages:1-10 2. Ritu, S., Yogesh, C., Yudhvir, S., 2010. Analysis of Security Protocols in Wireless Sensor Network. Int. J. Adv. Network. Applicat., Volume 2, Pages: 707-713. 3. Michael, W., Klaus-Dieter, T., Kester, H., Graeme, B., 2008. Theoretical and practical aspects of military wireless sensor networks. J. Telecommunicat.Informat. Technol. 4. Walid, B., Yacine, C., Abdelmajid, B., 2013. A new class of Hash-Chain based key pre-distribution schemes for WSN. Comput. Communicat., Volume 38, pages:243-255. 5. Meenakshi, T., Gaur, M.S., Laxmi, V., Comparing the Impact of Black Hole and Gray Hole Attack on LEACH in WSN. The 8th International Symposium on Intelligent Systems Techniques for Ad Hoc and Wireless Sensor Networks (IST-AWSN), pages: 1101 – 1107, 2013 6. Hailun, T., Diethelm, O., John, Z., Sanjay, J., A confidential and DoS-resistant multi-hop code dissemination protocol for wireless sensor networks. Comput. Secur., Volume 32, Pages:36-55, 2013 7. Jia-qi, X.U., Lei, W., Can, M., Lei, S., Study of impacts of duty-cycle on overlapping multi-hop clustering in wireless sensor networks. J. China Uni. Posts Telecommunicat., Volume 19, 2012. 8. Dong-Kyu, L., Tae-Hyon, K., Seol, Y.J., Soon-Ju, K., 2011. A three-tier middleware architecture supporting bidirectional location tracking of numerous mobile nodes under legacy WSN environment. J. System. Arch., Volume 57, 9. Li, L., Yuan-an, L., Bi-hua, T., SNMS: an intelligent transportation system network architecture based on WSN and P2P network. J. China Uni. Posts Telecommunicat., Volume 14, 2007 10. Song, M.A.O., Cheng-lin, Z.H.A.O., Unequal clustering algorithm for WSN based on fuzzy logic and improved ACO. J. China Uni. Posts Telecommunicat., Volume 10, 2011 11. Mustapha, R.S., Abdelhamid, M., Hadj, S., Amar, A., 2012. Performance evaluation of network lifetime spatial-temporal distribution for WSN routing protocols. J. Net. Comput. Applicat., Volume 35, 12. Stefan, K., Stafrace, N.A., 2010. Military tactics in agent-based sinkhole attack detection for wireless ad hoc networks. Comput. Communicat., Volume 33. 13. Zhang, R., Li, D., Huang, H.F., Wang, Y., Wang, Y.Z., Xia, L.Z., Logistics Transportation Vehicle System for Information Acquisition Based on Wireless Sensor Network. Proc. Eng., Volume 29, 2012 14. Jiafu, W., Hui, S., Hehua, Y., Jianqi, L., 2011. A General Test Platform for Cyber-Physical Systems: Unmanned Vehicle with Wireless Sensor Network Navigation. Proc. Eng., Volume 24. 15. Younis, O., Fahmy, S., 2004. HEED: A hybrid energy-efficient distributed clustering approach for ad hocsensor networks. IEEE Trans. on Mobile Comput., 3(4), 660-669. 16. Devesh, P.S., Goudar, R.H., Mohammad, W., 2013., Hiding the Sink Location from the Passive Attack in WSN. Proc. Eng., Volume 64. 17. Huan, D., Zhao-min, Z., Xiao-Feng, G., 2013. Multi-target indoor localization and tracking on video monitoring system in a wireless sensor network. J. Net. Comput. Applicat., Volume 36. 18. Qiuhua, W., Huifang, C., Lei, X., Kuang, W., 2013. One-way hash chain-based self-healing group key distribution scheme with collusion resistance capability in wireless sensor networks. Ad. Hoc. Networks, Volume 11. 19. Nils, H., Ole, B., Steffen, P., 2011. An Automated System for an Analog Light-Sensor with Adjustable Measuring Range and High Resolution in WSN. Proc. Eng., Volume 25.
Vougioukas, S., Anastassiu, H.T., Regen, C., Zude, M., An energy Influence of foliage on radio path losses (PLs) for wireless sensor network (WSN) planning in orchards. Biosyst. Eng., Volume 114, 2013 21. Jiliang, Z., Qiying, C., Caixia, L., Runcai, H., 2010. A genetic algorithm based on extended sequence and topology encoding for the multicast protocol in two-tiered WSN. Expert System. with Applicat., Volume 37. 22. Ananth, V.K., 2010. Nikhil Singhal, Steven Weber, “Broadcast capacity of a WSN under communication and information coordination. Ad Hoc Networks, Volume 8. 23. Kelly, D.C., Dimmock, N.J., 1974. Fowl plague virus replication in mammalian cell-avian erythrocyte heterokaryons: Studies concerning the actinomycin D and ultra-violet light sensitive phase in influenza virus replication. Virol., Volume 61. 24. Shah, H.A., Mahdi, H.Y., Joji, M.O., 2011. Heat-shock-induced color-pattern changes of the blue pansy butterfly Junonia orithya: Physiological and evolutionary implications. J. Therm. Biol., Volume 36, 25. Abu, R.M., Kamal, M.d., Abdul, H., 2013. Reliable data approximation in wireless sensor network. Ad Hoc Networks, Volume 11. 26. Jing, W., Liu, Y., 2012. Routing Protocol Based on Link Reliability for WSN. Phys. Proc., Volume 33. 27. Saamaja, V., Kiran, K., Rachuri, C., Siva, R.M., 2010. Using mobile data collectors to improve network lifetime of wireless sensor networks with reliability constraints. J. Parall. Distr. Comput., Volume 70. 28. Zoran, B., Veljko, M., 2013. Chapter 2 - Novel System Architectures for Semantic-Based Integration of Sensor Networks. Adv. Comput., Volume 90. 29. Petr, K., Jiri, K., Radim, S., Vojtech, L., 2013. Prototyping the visualization of geographic and sensor data for agric. Comput. Electron. Agric., Volume 97. 30. Tae-Hong, S., Sangyoon, C., Su-Won, Y., Soon-Wook, K., 2011. A service-oriented integrated information framework for RFID/WSN-based intelligent construction supply chain management. Automat. Construct., Volume 20. 31. Miloud, B., Yacine, C., 2011. Abdelraouf Ouadjaout, Noureddine Lasla, Nadjib Badache, " Efficient data aggregation with in-network integrity control for WSN. J. Parall. Distr. Comput., Volume 72. 32. Sabrina, S., Luigi, A.G., Gennaro, B., 2012. Alberto Coen-Porisini. DyDAP: A dynamic data aggregation scheme for privacy aware wireless sensor networks. J. System. Softw., Volume 85. 33. Pourpeighambar, S.B., Sabaei, M., 2013. Spatial correlation aware protocols for efficient data aggregation of moving object in wireless sensor networks. Sci. Iran., Volume 20. 34. Licheng, W., Lihua, W., Yun, P., Zonghua, Z., Yixian, Y., 2011. Discrete logarithm based additively homomorphic encryption and secure data aggregation. Inform. Sci., Volume 181. 35. Meenakshi, T., Gaur, M.S., Laxmi, V., 2013. Comparing the Impact of Black Hole and Gray Hole Attack on LEACH in WSN. Proc. Comput. Sci., Volume 19, 36. Kiran, K.P., Shivani, S., 2013. Protocol for Latency Reduction of Prioritized Traffic in WSN. Proc. Comput. Sci., Volume 19. 37. Meenakshi, T., Gaur, M.S., Laxmi, V., 2013. Comparing the Impact of Black Hole and Gray Hole Attack on LEACH in WSN. Proc. Comput. Sci., Volume 19. 38. Miloud, B., Yacine, C., Abdelraouf, O., Noureddine, L., Nadjib, B., 2012. Efficient data aggregation with in-network integrity control for WSN. J. Parall. Distr. Comput., Volume 72. 39. Wen, T.Z., Jianying, Z., Robert, H., Deng, F.B., 2012. Detecting node replication attacks in wireless sensor networks: A survey. J. Net. Comput. Appl., Volume 35. 40. Annlin, S.V., Jeba, B., 2013. Paramasivan, Energy efficient multipath data transfer scheme to mitigate false data injection attack in wireless sensor networks. Comput. Electr. Eng., Volume 39. 41. Ozgur, K.S., 2013. Large scale wireless sensor networks with multi-level dynamic key management scheme. J. System. Arch., Volume 59. 42. Rodrigo, R., Cristina, A., Javier, L., Nicolas, S., 2011. Key management systems for sensor networks in the context of the Internet of Things.Comput. Electr. Eng., Volume 37, 43. Michael, C., Jung-Min, P., Mohamed, E., 2007. Key management for long-lived sensor networks in hostile environments. Comput. Communicat., Volume 30.
Amir, A.B., Arash, G.D., javad, A., 2011. RGWSN: Presenting a genetic-based routing algorithm to reduce energy consumption in wireless sensor network. IJCSI Internat. J. Comput. Sci. Issu., Vol. 8, Issue 5, September. 45. Amir, A.Ba., Arash, G.D., 2012. CRCWSN: Presenting a Routing Algorithm by Using Re-clustering to Reduce Energy Consumption in Wireless Sensor Networks. Internat. J. Comput. Communications control Agora Univ., Romania. 46. Amir, A.Ba., Arash, G.D., Abootorab, A., 2012. KGAWSN: An Effective Way to Reduce Energy Consumption in Wireless Sensor Networks by K-means and Genetic Algorithms. Internat. J. Comput. Applic., (0975 – 888) Volume 48– No.12, June USA 47. Elham, R., Amir, A.B., Atefeh, H., 2013. TDTCGE: Two Dimensional Technique Based On Center of Gravity and Energy Center in Wireless Sensor Network", J. Basic. Appl. Sci. Res., 3(8)194-201. 48. Amir, A.B., Hassan, H., Hamed, Q., Mehrdad, H., 2013. Reviewing the New Methods of Routing for the Reduction of Energy Consumption in Wireless Sensor Network", J. Basic. Appl. Sci. Res., 3(8)194- 201. 49. Atefeh, H., Amir, A.B., Elham, R., 2013. IMKREC: Improved k-means Algorithm Method for Reducing Energy Consumption in Wireless Sensor Networks ", J. Basic. Appl. Sci. Res., 3(9)77- 88. 50. Amir, A.B., 2013. RAWSN: A Routing Algorithm Based on Auxiliary Nodes to Reduce Energy Consumption in Wireless Sensor Networks. J. Sci. Islam. Republ. Iran., 24(4): 355 – 359.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Amir Abbas Baradaran
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.