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Trimmed samples are widely utilized in several areas of
statistical practice, especially when some sample values at
either or both extremes might have been adulterated. In this
article, the problem of estimating the parameter of Gompertz
distribution based on trimmed samples under informative and
non-informative priors has been addressed. The problem
discussed using Bayesian approach to estimate the parameter
of Gompertz distribution. We have examined Bayes estimates
under symmetric and asymmetric loss functions. The explicit
expressions for estimator and risk are developed under all loss
functions. Elicitation of hyperparameter through prior
predictive approach is also discussed. Posterior Predictive
distributions and Credible Intervals are also derived under
different priors. The influence of parametric value on the
estimate and risk is also discussed. Finally, to assess the
performance of the estimators, numerical results using Monte
Carlo simulation study are reported.
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1. Introduction

Gompertz probability distribution has many useful applications in areas of the technology, medical,
biological, and natural sciences (especially in failure and survival analysis). This distribution was first
introduced by Gompertz (1825).

The distribution function of Gompertz probability distribution is given by

F(x) :1—exp[—/1{exp(x) —1}], 2>0,x>0.
And the corresponding pdf of (1) distribution has the following form:
f(x)= /Iexp(x)exp[—;t{exp(x) —1}], A>0,x>0.

(1)

(2)

where A is the scale parameter. Trimmed samples are widely employed in several areas of
statistical practice, especially when some sample values at either or both extremes might have been
contaminated. The problem of estimating the parameters of power function distribution based on a
trimmed sample and prior information has been considered in this paper. There are a few works available
in literature on the Bayesian analysis of the Gompertz probability distribution and its mixture. Soliman et
al. (2012) studied the Bayes and frequentist estimators for the two-parameter Gompertz distribution
(GD), as well as the reliability and hazard rate functions, using progressive first-failure censoring plan.
Jaheen (2003) considered the Bayesian analysis of record statistics from the Gompertz model. Gordon
(1990) derived maximum likelihood estimation for mixtures of two Gompertz distributions when
censoring occurs. Wu, et al. (2003) discussed the point and interval estimations for the Gompertz
distribution under progressive type-Il censoring. Feroze and Aslam (2012) studied Bayesian analysis of
Gumbel type Il distribution under doubly censored samples using different loss functions. Sindhu et al.
(2013) studied the Bayesian and non-Bayesian estimation for the shape parameter of the Kumaraswamy
distribution under type-Il censored samples.

The objective of this paper is to obtain the estimators of the unknown parameter of the Gompertz
distribution based on doubly censored type Il. The rest of paper is organized as follows. In section 2, the
posterior distributions have been derived under non-informative and informative priors. Estimation of
parameter has been discussed in section 3. Credible intervals have been derived in Section 4. Method of
Elicitation of the hyper-parameters via prior predictive approach has been discussed in section 5.
Posterior predictive distributions are derived in section 6. Simulation study is conducted in section 7. The
conclusions regarding the study have been presented in section 8.

2. Prior and posterior distributions

Some data may not be observed, a known number of observation in an ordered sample are missing

at both ends in failure censored experiments, the observations are the smallest I' and the largest I are
random then data collected will be X(r+1) < X(r+2) <..< X(n_s)and the likelihood function in double

censored type Il takes the following form:
L(M):(r—l)?—(!n—S)!fr[ (o2 {F ()] P2

L lli[{ﬂexp(x)exp[—i{e"p(x)‘1}]}

(r=1)(n—-s)ti;

X {1— exp [—ﬂ{exp(x) —1}]}r_1 {exp [—/l{exp(X) —l}]} :

L(x,4)=
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k= i=r

L(x,A) '0(_1)k (r l:l)ﬂ,sr*lexp{—z{i{exp(xi)—l} +k{exp(x ) -1} +(n- s){exp(xs)—l}H,

r—

L(X,ﬂ,)oc o(_l)k(rizlerXp[_lw'(X(i))] (3)

k=
where 7=S—r+1],

S

and ¢ (x(i)) = > {exp(x) -1} +k{exp(x, ) -1} + (n—s){exp(x,) - 1}.

i=r

2.1. Posterior distribution under non-informative prior

The uniform and Jeffreys prior are the example of non-informative prior which materializes the use
of the Bayesian estimation methods when no prior information is available. The posterior distribution
under the assumption of uniform and Jeffreys priors have been derived and presented in the following.

Uniform prior reflects the lack of prior information and the Bayesian methodology can still work.
Uniform prior may be proper or improper. Even if Uniform prior is improper, we can still have a proper
posterior. Equation (4) presents an improper prior while the posterior given in equation (5) is proper one
having total area uner the curve equals to unity. The uniform prior for A is defined as:

p(ﬂ)OCk, A>0. (4)
The posterior distribution under the assumption of uniform prior is:
r-1 W[ r _1 i
> (-1) | exp[—/l{ﬂ (x(i))ﬂ
p(2 |x)="2 , A>0. (5)
r-1 k(T -1 F(T +1)
;(_1) k 7+l
] {¢i (Xa))}
The Jeffreys prior has been derived to be:
p(ﬂ)oc%, A>0. (6)

The posterior distribution under the assumption of Jeffreys prior is:
- k r _l -1
> (1) A exp[—}t{ﬁ (x(i))}}
0 k
p(;ﬂ |X)= , A>0. (7)
-1 k(T -1 F(T)
S|
] {¢(X<i>)}

2.2. Posterior distribution under informative prior

In case of informative prior, the use of prior information is equivalent to add a number of
observations to the given sample size and hence leads to a reduction of posterior risks of the Bayes
estimates based on the said informative prior. Bolstad (2004) studied a method to evaluate the worth of
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prior information in terms of the number of additional observations supposed to be added to the given
sample size.

The informative prior for the parameter A is assumed to be exponential distribution:
p(A)=me™*™", A1>0. 8)

The posterior distribution under the assumption of exponential prior is:
r-1

S oo -afmeafx, )]

p(/1 |X): = -1 (=1 F(T+1)
kzz;,(_l) [ k j{m+¢,(x(l))}r+l

The informative prior for the parameter A is assumed to be gamma distribution:

, A>0. (9)

ba
A)=——2""%", ab,A>0.
p(2) r(a) e ™, ab,1> (10)

The posterior distribution under the assumption of gamma prior is:

rz_l:(—l)k [r ;ljﬁﬁa_l exp [—ﬁ {b +4 (X(i) )}}

P(41x)= - = (r—=1 I'(r+a) ’
=,

The informative prior for the parameter A is assumed to be Inverse Levy distribution:

p(A)= \/gﬁ exp{—[%ﬂ, c>0.

a,b,1>0. (11)

(12)
The posterior distribution under the assumption of Inverse Levy prior is:
= r-1
p(A[x)="= c,A>0. (13)

(" F(”;jl |
{o+alx)}

It is obvious that the posterior density function under non-informative and informative prior is
recognized as the mixture of gamma density functions.

3. Bayes estimators and posterior risks under different loss functions

From a decision-theoretic view point, in order to select the best estimator, a loss function must be
specified and is used to represent a penalty associated with each of the possible estimates. This section
enlightens the derivation of the Bayes Estimator (BE) and corresponding Posterior Risks (PR) under
different loss functions. The Bayes estimators are evaluated under Squared Error Loss Function (SELF),
Precautionary Loss Function (PLF), Weighted Squared Error Loss Function (WSELF), Quasi-Quadratic Loss
Function (QQLF), Squared-Log Error Loss Function (SLELF), and Entropy Loss Function (ELF). The Bayes
Estimator (BE) and corresponding Posterior Risks (PR) under different loss functions are given in the
following Table.
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Table 1
Bayes estimator and posterior risks under different loss functions.
Loss Function= L(/l, ZA) Bayes Estimator Posterior Risk
SELF: (/”L—i)z E(4]x) Var (4 |x)
A )
PLF: (/1 /{1) ( |X) 2 E(ﬂL |X) E(4]x)
5\2 o 1 B ) 1
WSELF: @ {E(/l lx)} E(41x) {E(’ﬁt |X)}
—cl —er\? -1 —c —c YAG
ca(e? e Tnfe(e< i) Ele)-fele)
SLELF: (Ini—ln 1)2 exp{E(InA|x)} E{(In1|x) }2 E(InA|x }

{
ELF: b{(%}—lng]—l} (E(a*1x)) In{E(47|x){+E(In2)

The Bayes Estimators and Posterior Risks under uniform prior are:

g (_1)k(rlzlj ;(1% 2)

k=0
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r_l(_l) (r 1) (T+1)z//(r+1)

()

p( A )= H(_l)k( : j{ (z‘+12

~ 4(%)) ’
= «(r-1) T(z+1)
(-1) —
; k=0 ( k J{Q(X(I))} |

e = rl(_l)k(rgl) {r(f)

G« (r-1) () ST

P(/:LELF)Zln kZO( 1)[ ‘ J{¢'(X(') }T +y(r+1)—In kZO( 1)( ‘ j{ﬂ(x(ll))}m :
rl(_l)k[l’l:].j F(2'+12+1 rl(_l)k(rlzljlﬁz
= {4 (o)} o {4 (%)

The Bayes Estimators and posterior Risks under the rest of priors can be obtained in a similar
manner.

4. Bayes credible interval for the doubly type ii censored data

The Bayesian credible intervals for the doubly type Il censored data under informative and non-
informative priors, as discussed by Saleem and Aslam (2009) are presented in the following. The credible

intervals for doubly type Il censored data under all priors are:
r-1 r-1
2 k r _1 1 2 k r _l 1
X z(m)(z)Z(_l) ( K ) 42 X gesa)fi-g) (-1) ( K 7+2
i {;/i(x )} 2\ {¢(X )}
A0 1\ 7)
< ﬂUniform < r-1 1

2rl(—1)k(r;1jll 2k0(1)k(r;1){¢l(x(i))}m
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) SR I’—l] 1 2 S k(r_lj 1
£ aen1)() (=) { k {m+¢5.(x(i))}r+2 %2(T+1)(1_%)§( ! ‘ {mﬂj'(x(i))}Hz

([ S T L N
H ) F )

- k(r—1 1 r—1 (r=1 1
2 _1 2 _1
X 2(’*%](%)k:0( ) ( k j c 74312 4 2(”*)(1—%)1@0( ) ( k ] c 71312
§+¢'(X<n>) §+¢i(x<.)
r—1 . r _1 1 < ﬂ“ln—Levy < r-1 v r _1 1
2k:0(_ ) [ J c 74172 2k:o(_1) ( k j e r+1/2
{2 ¢'(X<i>)} {2“/%(%)}

5. Elicitation

Bayesian analysis elicitation of opinion is a crucial step. It helps to make it easy for us to understand
what the experts believe in and what their opinions are. In statistical inference the characteristics of a
certain predictive distribution proposed by an expert determine the hyperparameters of a prior
distribution.

In this article, we focus on a probability elicitation method known as prior predictive elicitation.
Predictive elicitation is a method for estimating hyperparameters of prior distributions by inverting

corresponding prior predictive distributions. Elicitation of hyperparameter from the prior p(ﬂ) is

conceptually difficult task because we first have to identify prior distribution and then its
hyperparameters. The prior predictive distribution is used for the elicitation of the hyperparameters
which is compared with the experts' judgment about this distribution and then the hyperparameters are
chosen in such a way so as to make the judgment agree closely as possible with the given distribution
(reader desires more detail see Grimshaw et al. (2001), Kadane (1980), O'Hagan et al. (2006), Kadane et
al. (1996), Jenkinson (2005) and Leon et al. (2003)). According to Aslam (2003), the method of assessment
is to compare the predictive distribution with experts' assessment about this distribution and then to
choose the hyperparameters that make the assessment agree closely with the member of the family. He
discusses three important methods to elicit the hyperparameters: (i) Via the Prior Predictive Probabilities
(ii) Via Elicitation of the Confidence Levels (iii) Via the Predictive Mode and Confidence Level.

5.1. Prior predictive distribution

The prior predictive distribution is:
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o0

p(y)=[p(y|4)p(2)dA. (14)
The prediitive distribution under exponential prior is:

p(y) = ]g/iexp(y)exp[—ﬂ{exp(y)—l}] me~*"d A, (15)
After some simplification it reduces as

p(y) = () =, y>0. (16)

{m+exp(y)—l}

The predictive distribution under gamma prior is:

ab®exp(y)
{b+exp(y)—1}a+1 ’

The predictive distribution under Inverse Levy prior is:
Jeexp(y)
3/
2%2{c/2+exp(y)-1}

By using the method of elicitation defined by Aslam (2003), we obtain the following hyper-
parameters m = 0.285697, a = 3.49879, b =0.96675 and c = 0.98954.

p(y) = y >0. (17)

p(y) = =, y>0. (18)

6. Predictive distribution

The predictive distribution contains the information about the independent future random
observation given preceding observations. The reader desires more details can see Bolstad (2004) and
Bansal (2007).

6.1. Posterior predictive distribution

The posterior predictive distribution of the future observation Yy =X, is
p(y %)= [ p(2|x)p(y| A)dA (19)
0

where p(y|/1):lexp(x)exp[—/i{exp(x)—l}] is the future observation density and

p(l | x) is the posterior distribution obtained by incorporating the likelihood with the respective prior

distributions.

The posterior predictive distribution of the future observation Y = X, under uniform prior is:

r-1 ) r—1 (r+1)eXIO(Y) -
) )£ ‘ J{@(Xm)*e)(p(y)_l}r

Py 3 = ,
1 e —
k:O( ) [ k J{ﬁ(x(l))}ﬂr

The posterior predictive distribution of the future observation Y = X ; under Jeffreys prior is:

y>0.
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= Ly r-1 rexp(y) ,
( )( k {¢I(x(i))+exp(y)—1}T

p(y|x)= — , y>0.
k(r—1 1
N
{¢' (X<i))}
The posterior predictive distribution of the future observation Y = X, under exponential prior is:

i(—l)k[rglj{w<r+1)exp<y)

k=0 (x(i))+exp(y)_1}’+z

p(y |x) = , y>0.

= k(T -1 1

(_l) k 7+1
k=0 {m + 6 (x(i))}
The posterior predictive distribution of the future observation Y = X ,; under gamma prior is:

i(_l)k(rlZl] (z+a)exp(y)

RS e, U Y
("]

k T+a
{b +¢ (x(i) )}
The posterior predictive distribution of the future observation Y = X, under In-Levy prior is:
1
G (ro1 (r+2)exp(y)
(_1) k c 7+3/2
{2 +é (x(i))+ exp(y) —1}
r

p(y[x) = :
= kf(r—1 1
(_1) ( k J 1
k=0 c | 2

k=0

y>0.

7. Simulation study

This section shows how simulation can be helpful and illuminating way to approach problems in
Bayesian analysis. Bayesian problems of updating estimates can be handled easily and straight forwardly
with simulation. Since we can express the distribution function of Gompertz distribution as well as its
inverse in closed form, the inversion method of simulation is straightforward to implement. The study
has been carried out for different values of (N,r ands) usingA e (5and9). Censoring rate is
assumed to be 20%. The estimation has been done under 10% left and 10% right censored samples.
Sample size is varied to observe the effect of small and large samples on the estimators. Changes in the
estimators and their risks have been determined when changing the loss function and the prior
distribution of A while keeping the sample size fixed. All these results are obtained from 5,000 Monte
Carlo replications. In the Tables, the estimators for the parameter and the risk, is averaged over the total
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number of repetitions. Mathematica 8.0 has been used to carry out the results. All the results are
summarized in the Tables 2-16.

Table 2
Bayes estimates and the posterior risks (given in parentheses) under uniform prior.
N A=5

SELF PLF WSELF QQLF SLELF ELF
20 5.61695 5.71548 5.31295 4.83946 5.40453 5.21777
r=3,n-s=18 (1.76728) (0.289531) (0.295256) (0.000219) (0.060586) (0.024384)
40 5.26997 5.34524 5.17640 4.92431 5.16326 5.18517
r=5,n-s=36  (0.77360) (0.141628) (0.143816) (0.000070) (0.030767) (0.012176)
60 5.16861 5.25206 5.09757 4.95896 5.16041 5.061160
r=7, n-s=54  (0.495384) (0.094223) (0.094414) (0.000038) (0.020618) (0.008113)
80 5.10433 5.18109 5.06723 4.97543 5.07710 5.05826

r=9, n-s=72  (0.360327) (0.070083) (0.067671) (0.000025) (0.015503) (0.006063)

Table 3

Bayes estimates and the posterior risks (given in parentheses) under uniform prior.
0 A=9

SELF PLF WSELF QQLF SLELF ELF

20 9.96216 10.48990 9.56359 8.04300 9.54521 9.518350
r=3, n-s=18 (5.52605) (0.53121) (0.531474) (6.18 X 10'6) (0.060586) (0.024383)
40 9.54567 9.68974 9.27813 8.48097 9.37394 9.27650
r=5,n-s=36 (2.53562) (0.256742) (0.257775) (7.43 x10”7) (0.030767) (0.012176)
60 9.28744 9.35120 9.17239 8.62280 9.18446 9.20005
r=7, n-s=54 (1.59601) (0.167744) (0.169886) (2.47 x10’) (0.020618) (0.008113)
80 9.25833 9.26726 9.09765 8.72255 9.16633 9.11756

r=9, n-s=72 (1.19731) (0.125579) (0.126955) (1.14 x107) (0.015503) (0.006063)

Table 4
Bayes estimates and the posterior risks (given in parentheses) under jeffreys prior.
N A=5

SELF PLF WSELF QQLF SLELF ELF
20 5.33537 5.45378 4.95872 4.60587 5.19675 4.95209
r=3, n-s=18 (1.07569)  (0.291008)  (0.291773) (0.000302) (0.064494) (0.025599)
40 5.13786 5.21716 4.96930 4.78916 5.0666 4.95649
r=5,n-s=36  (0.75365)  (0.141998)  (0.142007) (0.000088) (0.030767) (0.12469)
60 5.10566 5.19837 4.97468 4.85221 5.03535 4.95786
r=7, n-s=54  (0.49229) (0.0950113) (0.093877) (0.000043) (0.021052) (0.008242)
80 5.06014 5.09057 4.98278 4.93334 5.02978 5.01754

r=9, n-s=72 (0.360070) (0.069889) (0.0640041) (0.000027) (0.015747) (0.005918)

Table 5
Bayes estimates and the posterior risks (given in parentheses) under jeffreys prior.
0 A=9

SELF PLF WSELF QQLF SLELF ELF
20 9.57236 9.77527 8.90903 7.49634 9.26752 8.90043
r=3, n-s=18 (5.40728) (0.549732) (0.528919) (0.000012) (0.064494) (0.025599)
40 9.46732 9.41713 8.92703 8.17871 9.12322 8.98946
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r=5,n-s=36 (2.40182) (0.258308) (0.255110) (1.13 X10°) (0.030767) (0.012469)

60 9.19865 9.26592 8.95093 8.45766 9.09228 9.01250
r=7,n-s=54 (1.59832) (0.169270) (0.168913) (3.46x10”) (0.021052) (0.008242)
80 9.06331 9.17781 8.99599 8.57278 9.03260 8.99562

r=9, n-s=72 (1.14973) (0.139274) (0.117009) (1.52x10”) (0.015747) (0.005918)

Table 6
Bayes estimates and the posterior risks (given in parentheses) under exponential prior.
0 A=5

SELF PLF WSELF QQLF SLELF ELF
20 5.14592 5.19746 4.88107 4.46527 4.93563 4.83442
r=3,n-s=18 (1.46631) (0.263280) (0.271242) (0.000313) (0.060586) (0.024381)
40 5.11438 5.11754 4.94468 4.67774 4.97820 4.93158
r=5,n-s=36 (0.727349) (0.135950) (0.137376) (0.000093) (0.030767) (0.012176)
60 5.04997 5.10130 4.97061 4.81099 4.99201 4.95522
r=7,n-s=54 (0.471899) (0.091520) (0.092063) (0.000045) (0.020618) (0.008113)
80 5.02497 5.07341 4.98150 4.88216 4.99588 4.97235

r=9, n-s=72 (0.353406) (0.068756) (0.063702) (0.000028) (0.015503) (0.006099)

Table 7
Bayes estimates and the posterior risks (given in parentheses) under exponential prior.
0 A=9

SELF PLF WSELF QQLF SLELF ELF
20 8.68498 9.09142 8.31611 7.10907 8.440990 8.31475
r=3, n-s=18 (4.16003) (0.451528) (0.462112) (0.000013) (0.060586) (0.024381)
40 8.84439 9.05936 8.53135 7.90988 8.72109 8.62070
r=5,n-s=36  (2.16995) (0.239504) (0.237022) (1.33X% 10'6) (0.030767) (0.012176)
60 8.91833 9.04953 8.70212 8.20969 8.77526 8.75455
r=7, n-s=54  (1.47164) (0.162349) (0.161173) (4.05x107) (0.020618) (0.008113)
80 8.94251 9.04509 8.80830 8.49391 8.86013 8.83115

r=9, n-s=72 (0.957981) (0.120453) (0.112143) (1.76x107) (0.015503) (0.006099)

Table 8
Bayes estimates and the posterior risks (given in parentheses) under gamma prior.
0 A=5

SELF PLF WSELF QQLF SLELF ELF
20 4.86038 4.92933 4.67084 4.36813 4.69282 4.62331
r=3, n-s=18 (1.14488) (0.221630) (0.227908) (0.000267) (0.052623) (0.021779)
40 4.92062 4.95329 4.79951 4.66174 4.84772 4.80936
r=5,n-s=36 (0.627488) (0.123091) (0.124686) (0.000084) (0.028571) (0.011496)
60 4.95922 4.96693 4.87245 4.77996 4.87694 4.90818
r=7,n-s=54 (0.434842) (0.085284) (0.086254) (0.000043) (0.019608) (0.007807)
80 4.96765 5.00488 4.90104 4.82579 4.94684 4.92166

r=9, n-s=72 (0.329846) (0.065699) (0.062742) (0.000028) (0.014927) (0.005925)

Table 9
Bayes estimates and the posterior risks (given in parentheses) under gamma prior.
0 A=9
SELF PLF WSELF QQLF SLELF ELF
20 7.43222 7.59738 7.14111 6.37941 7.26513 7.11246

r=3,n-s=18 (2.63516)  (0.34157)  (0.34842)  (0.000019) (0.052623) (0.021776)
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40 8.12568  8.20407  7.93131 7.35221 7.97027 7.86598
r=5,n-s=36 (1.70386) (0.203869) (0.206041) (2.07x10°) (0.028571) (0.011496)
60 8.34277  8.47785  8.23122 7.7659 8.31594 8.20961
r=7,n-s=54  (1.22850) (0.145563) (0.145706) (6.18x107) (0.019608) (0.007807)
80 8.51335 851927  8.51960 8.40357 8.54807 8.49527

r=9, n-s=72 (0.967644) (0.114574) (0.112076) (2.52x107) (0.014927) (0.005925 )

Table 10
Bayes estimates and the posterior risks (given in parentheses) under in-levy prior.
N A=5

SELF PLF WSELF QQLF SLELF ELF
20 4.67626 4.8 0701 4.42247 4.20880 4.56377 4.44211
r=3,n-s=18 (1.23768) (0.249815) (0.252769) (0.000414) (0.062480) (0.024973)
40 4.85201 4.92341 4.68724 4.51897 4.84027 4.71898
r=5,n-s=36 (0.66105) (0.132201) (0.132057) (0.000117) (0.031248) (0.012321)
60 4.87461 4.96465 4.80403 4.67936 4.87159 4.82525
r=7, n-s=54 (0.443122) (0.089873) (0.089808) (0.000054) (0.020833) (0.008177)
80 491181 4.97676 4.87052 4.73760 4.87924 4.87725

r=9, n-s=72 (0.337039) (0.068185) (0.069719) (0.000033) (0.015625) (0.006118)

Table 11
Bayes estimates and the posterior risks (given in parentheses) under in-levy prior.
0 A=9

SELF PLF WSELF QQLF SLELF ELF
20 7.64419 7.84752 7.33163 6.38845 7.44037 7.24521
r=3, n-s=18 (3.27333) (0.407808) (0.419023) (0.000028) (0.062480) (0.024973)
40 8.26884 8.39473 8.10603 7.41991 8.22511 8.08924
r=5,n-s=36  (1.91314) (0.225406) (0.228374) (2.45X% 10'6) (0.031248) (0.012321)
60 8.54645 8.56546 8.41949 7.94316 8.46694 8.35261
r=7, n-s=54  (1.36176) (0.155057) (0.157394) (5.66x107) (0.020833) (0.008177)
80 8.65756 8.74001 8.53004 8.35445 8.60776 8.57610

r=9, n-s=72 (1.044985) (0.121042) (0.120318) (2.35><10'7) (0.015625) (0.006118)

Table 12

The lower (LL), the upper (UL) and the width of the 95% CI under uniform prior.

r,n, n-s A=5 Width A=9 Width
LL UL LL UL

3,20,18 3.15183 8.26949 5.11766 5.63399 14.78197 9.14798

5,40, 36 3.53151 7.02306 3.49155 6.38894 12.70562 6.31668

7,60, 54 3.76513 6.61003 2.84490 7.11693 12.49443 5.37750

9, 80,72 3.91623 6.38007 2.46384 7.00353 11.40977 4.40620

Table 13
The lower (LL), the upper (UL) and the width of the 95% Cl under jeffreys prior.
r,n, n-s A=5 Width A=9 Width

LL UL LL UL
3,20,18 292981 7.92574 499593 5.23712 14.16749 8.93037
5,40, 36 3.41432 6.86390 3.44958 6.17694 12.41768 6.24074
7,60,54  3.68424 6.50625 2.82201 6.96407 12.29831 5.33424
9, 80,72 3.85449 6.30358 2.44909 6.89277 11.27233 4.37956
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Table 14
The lower (LL), the upper (UL) and the width of the 95% CI under exponential prior.
r,n, n-s A=5 Width A=9 Width

LL UL LL UL
3,20,18 2.91469  7.64731 473262 4.91867 1290516  7.98649
5,40, 36 3.39692  6.75541  3.35849 5.96191  11.85638  5.89447
7,60, 54 3.66813  6.43973 2.77160 6.77819  11.89974  5.12155
9, 80,72 3.83995 6.25581 2.41586 6.76340 11.01851  4.25511

Table 15
The lower (LL), the upper (UL) and the width of the 95% Cl under gamma prior.
r,n, n-s A1=35 Width A=7 Width

LL UL LL UL
3,20, 18 2.91155 7.15406 4.24251 4.44826 10.92998 6.48172
5,40, 36 3.37322 6.54277 3.16955 5.56992 10.80353 5.23361
7,60,54  3.64179 6.30489 2.66310 6.41487 11.10580 4.69093
9, 80,72 3.81482 6.15804 2.34322 6.49959 10.49191 3.99232

Table 16
The lower (LL), the upper (UL) and the width of the 95% ClI under Inverse Levy Prior.
r,n, n-s A=35 Width A=T7 Width

LL UL LL UL
3,20,18 2.66511  7.09772  4.43261 434171  11.56283  7.22112
5,40, 36 3.24988  6.49766  3.24778  5.58917  11.17473  5.58556
7,60, 54 3.56158  6.27096  2.70938 6.47964  11.40887  4.92923
9, 80,72 3.75949  6.13637 2.37688  6.55129  10.69325 4.14196

8. Conclusion

The simulation study has displayed some interesting properties of the Bayes estimates. After an
extensive study of results, conclusions are drawn regarding the behavior of the estimators. The risks of
the estimates seem to be large in case when the value of the parameter is large and small for relative
smaller value of the parameter except under quasi-quadratic loss function. However, the risks under said
loss functions are reduced as the sample size increases. Another interesting remark concerning the risks
of the estimates is that increasing (decreasing) the value of the parameter reduces (increases) the risks of
the estimates under quasi-quadratic loss function. The performance of squared-log error loss function and
entropy loss function is independent of choice of parametric value. The above study depicts that the
estimated value of the parameter converges to the true value of the parameter by increasing the sample
size. The greater values of the parameter impose a negative impact on convergence and performance of
the estimates. The effect of the increasing values of the parameter is in the form of underestimation
assuming each informative prior. The patterns of the estimates discussed above, are almost similar under
uniform and Jeffreys priors. However, the performance of the uniform prior is better for estimates under
SLELF, ELF, PLF and QQLF. While for estimates, under SELF and WSELF, the performance of the Jeffreys
prior is better than uniform prior. In comparison of informative priors, the gamma prior provides the
better estimates as the corresponding risks are least under said loss functions with few exceptions. While
the exponential prior turns out to perform better under QQLF for larger values of the parameter,
therefore it produces more efficient estimates as compared to other informative priors.

After an extensive study of the results, thus obtained, we observed that the risks of the estimators
under doubly type Il censored data assuming uniform prior behave similarly to the risks of the estimators
under exponential prior under SLELF and ELF. In addition, estimates under quasi-quadratic loss function
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give the minimum risks among all loss functions for each prior. The Credible interval are in accordance
with the point estimates, that is, the width of credible interval is inversely proportional to sample size
while, it is directly proportional to the parametric value. From the Table 12-16, appended above, reveal
that the effect of the parametric values in the form of larger width of interval. The Credible interval
assuming gamma prior is much narrower than the credible intervals assuming informative and non-
informative priors. It is the use of prior information that makes a difference in terms of gain in precision.
The study can further be extended by considering generalized versions of the distribution under variety of
circumstances.
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