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A B S T R A C T 

 

Trimmed samples are widely utilized in several areas of 
statistical practice, especially when some sample values at 
either or both extremes might have been adulterated. In this 
article, the problem of estimating the parameter of Gompertz 
distribution based on trimmed samples under informative and 
non-informative priors has been addressed. The problem 
discussed using Bayesian approach to estimate the parameter 
of Gompertz distribution. We have examined Bayes estimates 
under symmetric and asymmetric loss functions. The explicit 
expressions for estimator and risk are developed under all loss 
functions. Elicitation of hyperparameter through prior 
predictive approach is also discussed. Posterior Predictive 
distributions and Credible Intervals are also derived under 
different priors. The influence of parametric value on the 
estimate and risk is also discussed. Finally, to assess the 
performance of the estimators, numerical results using Monte 
Carlo simulation study are reported. 
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1. Introduction 

Gompertz probability distribution has many useful applications in areas of the technology, medical, 
biological, and natural sciences (especially in failure and survival analysis). This distribution was first 
introduced by Gompertz (1825). 

The distribution function of Gompertz probability distribution is given by 

    1 exp exp 1    > , 0, 0.xF x x      
             (1)                     

And the corresponding pdf of (1) distribution has the following form: 

  
      exp exp exp 1    > , 0, 0.x xf x x      

               (2) 
                                                       

where    is the scale parameter. Trimmed samples are widely employed in several areas of 

statistical practice, especially when some sample values at either or both extremes might have been 
contaminated. The problem of estimating the parameters of power function distribution based on a 
trimmed sample and prior information has been considered in this paper. There are a few works available 
in literature on the Bayesian analysis of the Gompertz probability distribution and its mixture. Soliman et 
al. (2012) studied the Bayes and frequentist estimators for the two-parameter Gompertz distribution 
(GD), as well as the reliability and hazard rate functions, using progressive first-failure censoring plan. 
Jaheen (2003) considered the Bayesian analysis of record statistics from the Gompertz model. Gordon 
(1990) derived maximum likelihood estimation for mixtures of two Gompertz distributions when 
censoring occurs. Wu, et al. (2003) discussed the point and interval estimations for the Gompertz 
distribution under progressive type-II censoring. Feroze and Aslam (2012) studied Bayesian analysis of 
Gumbel type II distribution under doubly censored samples using different loss functions. Sindhu et al. 
(2013) studied the Bayesian and non-Bayesian estimation for the shape parameter of the Kumaraswamy 
distribution under type-II censored samples. 

The objective of this paper is to obtain the estimators of the unknown parameter of the Gompertz 
distribution based on doubly censored type II. The rest of paper is organized as follows. In section 2, the 
posterior distributions have been derived under non-informative and informative priors. Estimation of 
parameter has been discussed in section 3. Credible intervals have been derived in Section 4. Method of 
Elicitation of the hyper-parameters via prior predictive approach has been discussed in section 5. 
Posterior predictive distributions are derived in section 6. Simulation study is conducted in section 7. The 
conclusions regarding the study have been presented in section 8. 

2. Prior and posterior distributions 

Some data may not be observed, a known number of observation in an ordered sample are missing 

at both ends in failure censored experiments, the observations are the smallest r and the largest sr are 

random then data collected will be 
     1 2
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where  1,s r      

and            exp 1 exp 1 ( ) exp 1 .
s

i i r si
i r

x x k x n s x


        

          2.1. Posterior distribution under non-informative prior 

The uniform and Jeffreys prior are the example of non-informative prior which materializes the use 
of the Bayesian estimation methods when no prior information is available. The posterior distribution 
under the assumption of uniform and Jeffreys priors have been derived and presented in the following. 

Uniform prior reflects the lack of prior information and the Bayesian methodology can still work. 
Uniform prior may be proper or improper. Even if Uniform prior is improper, we can still have a proper 
posterior. Equation (4) presents an improper prior while the posterior given in equation (5) is proper one 

having total area uner the curve equals to unity.  The uniform prior for   is defined as: 

( ) ,    0.p k                                                     (4)     

The posterior distribution under the assumption of uniform prior is:    
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|x                    (5) 

             
The Jeffreys prior has been derived to be:   

 
1

,     0.p  


                   (6)  

The posterior distribution under the assumption of Jeffreys prior is:   
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|x                (7)        

          2.2. Posterior distribution under informative prior 

In case of informative prior, the use of prior information is equivalent to add a number of 
observations to the given sample size and hence leads to a reduction of posterior risks of the Bayes 
estimates based on the said informative prior. Bolstad (2004) studied a method to evaluate the worth of 
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prior information in terms of the number of additional observations supposed to be added to the given 
sample size. 

The informative prior for the parameter   is assumed to be exponential distribution: 

( ) ,   0.mp me              (8)          

The posterior distribution under the assumption of exponential prior is:   
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|x             (9) 

The informative prior for the parameter   is assumed to be gamma distribution: 
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                (10)   

The posterior distribution under the assumption of gamma prior is:   
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|x                 (11)                    

The informative prior for the parameter   is assumed to be Inverse Levy distribution:  
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         (12)                   
The posterior distribution under the assumption of Inverse Levy prior is:   
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|x                  (13)                    

It is obvious that the posterior density function under non-informative and informative prior is 
recognized as the mixture of gamma density functions. 

3. Bayes estimators and posterior risks under different loss functions 

From a decision-theoretic view point, in order to select the best estimator, a loss function must be 
specified and is used to represent a penalty associated with each of the possible estimates. This section 
enlightens the derivation of the Bayes Estimator (BE) and corresponding Posterior Risks (PR) under 
different loss functions. The Bayes estimators are evaluated under Squared Error Loss Function (SELF), 
Precautionary Loss Function (PLF), Weighted Squared Error Loss Function (WSELF), Quasi-Quadratic Loss 
Function (QQLF), Squared-Log Error Loss Function (SLELF), and Entropy Loss Function (ELF). The Bayes 
Estimator (BE) and corresponding Posterior Risks (PR) under different loss functions are given in the 
following Table. 
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Table 1 
Bayes estimator and posterior risks under different loss functions. 

Loss Function=   ˆ,  L    Bayes Estimator Posterior Risk 
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The Bayes Estimators and Posterior Risks under uniform prior are: 
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The Bayes Estimators and posterior Risks under the rest of priors can be obtained in a similar 

manner. 

4. Bayes credible interval for the doubly type ii censored data 

The Bayesian credible intervals for the doubly type II censored data under informative and non-
informative priors, as discussed by Saleem and Aslam (2009) are presented in the following. The credible 
intervals for doubly type II censored data under all priors are: 
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5. Elicitation 

Bayesian analysis elicitation of opinion is a crucial step. It helps to make it easy for us to understand 
what the experts believe in and what their opinions are. In statistical inference the characteristics of a 
certain predictive distribution proposed by an expert determine the hyperparameters of a prior 
distribution. 

In this article, we focus on a probability elicitation method known as prior predictive elicitation. 
Predictive elicitation is a method for estimating hyperparameters of prior distributions by inverting 

corresponding prior predictive distributions. Elicitation of hyperparameter from the prior  p   is 

conceptually difficult task because we first have to identify prior distribution and then its 
hyperparameters. The prior predictive distribution is used for the elicitation of the hyperparameters 
which is compared with the experts' judgment about this distribution and then the hyperparameters are 
chosen in such a way so as to make the judgment agree closely as possible with the given distribution 
(reader desires more detail see Grimshaw et al. (2001), Kadane (1980), O'Hagan et al. (2006), Kadane et 
al. (1996), Jenkinson (2005) and Leon et al. (2003)). According to Aslam (2003), the method of assessment 
is to compare the predictive distribution with experts' assessment about this distribution and then to 
choose the hyperparameters that make the assessment agree closely with the member of the family. He 
discusses three important methods to elicit the hyperparameters: (i) Via the Prior Predictive Probabilities 
(ii) Via Elicitation of the Confidence Levels (iii) Via the Predictive Mode and Confidence Level.  

          5.1. Prior predictive distribution 

The prior predictive distribution is: 
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  | .            (14)  

The predictive distribution under exponential prior is: 
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              (15) 

After some simplification it reduces as 
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The predictive distribution under gamma prior is: 
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The predictive distribution under Inverse Levy prior is: 
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              (18)                   

       By using the method of elicitation defined by Aslam (2003), we obtain the following hyper-
parameters m = 0.285697, a = 3.49879,   b = 0.96675 and c = 0.98954. 

6. Predictive distribution 

The predictive distribution contains the information about the independent future random 
observation given preceding observations. The reader desires more details can see Bolstad (2004) and 
Bansal (2007). 

          6.1. Posterior predictive distribution  

The posterior predictive distribution of the future observation 1ny x    is 
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x x| || ) =                                                                      (19)     

where     ( ) exp exp exp 1p y x x     |  is the future observation density and 

 p  x|  is the posterior distribution obtained by incorporating the likelihood with the respective prior 

distributions. 

The posterior predictive distribution of the future observation 1ny x  under uniform prior is:  
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The posterior predictive distribution of the future observation 1ny x  under Jeffreys prior is:  
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The posterior predictive distribution of the future observation 1ny x  under exponential prior is:  
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The posterior predictive distribution of the future observation 1ny x  under gamma prior is:  
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The posterior predictive distribution of the future observation 1ny x  under In-Levy prior is:  
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7. Simulation study 

This section shows how simulation can be helpful and illuminating way to approach problems in 
Bayesian analysis. Bayesian problems of updating estimates can be handled easily and straight forwardly 
with simulation. Since we can express the distribution function of Gompertz distribution as well as its 
inverse in closed form, the inversion method of simulation is straightforward to implement.  The study 

has been carried out for different values of ( ,  and )n r s  using (5 and 9).  Censoring rate is 

assumed to be 20%. The estimation has been done under 10% left and 10% right censored samples. 
Sample size is varied to observe the effect of small and large samples on the estimators. Changes in the 
estimators and their risks have been determined when changing the loss function and the prior 

distribution of  while keeping the sample size fixed. All these results are obtained from 5,000 Monte 

Carlo replications. In the Tables, the estimators for the parameter and the risk, is averaged over the total 
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number of repetitions. Mathematica 8.0 has been used to carry out the results. All the results are 
summarized in the Tables 2-16. 
 

Table 2 
Bayes estimates and the posterior risks (given in parentheses) under uniform prior. 

n 
5   

SELF PLF WSELF QQLF SLELF ELF 

20 
r=3, n-s=18 

5.61695 5.71548 5.31295 4.83946 5.40453 5.21777 
(1.76728) (0.289531) (0.295256) (0.000219) (0.060586) (0.024384) 

40 
r=5, n-s=36 

5.26997 5.34524 5.17640 4.92431 5.16326 5.18517 
(0.77360) (0.141628) (0.143816) (0.000070) (0.030767) (0.012176) 

60 
r=7, n-s=54 

5.16861 5.25206 5.09757 4.95896 5.16041 5.061160 
(0.495384) (0.094223) (0.094414) (0.000038) (0.020618) (0.008113) 

80 
r=9, n-s=72 

5.10433 5.18109 5.06723 4.97543 5.07710 5.05826 
(0.360327) (0.070083) (0.067671) (0.000025) (0.015503) (0.006063) 

 
Table 3 
Bayes estimates and the posterior risks (given in parentheses) under uniform prior. 

n 
9   

SELF PLF WSELF QQLF SLELF ELF 

20 
r=3, n-s=18 

9.96216 
(5.52605) 

10.48990 9.56359 8.04300 9.54521 9.518350 
(0.53121) (0.531474) (6.18 10

-6
) (0.060586) (0.024383) 

40 
r=5, n-s=36 

9.54567 9.68974 9.27813 8.48097 9.37394 9.27650 
(2.53562) (0.256742) (0.257775) (7.43 10

-7
) (0.030767) (0.012176) 

60 
r=7, n-s=54 

9.28744 9.35120 9.17239 8.62280 9.18446 9.20005 
(1.59601) (0.167744) (0.169886) (2.47 10

-7
) (0.020618) (0.008113) 

80 
r=9, n-s=72 

9.25833 9.26726 9.09765 8.72255 9.16633 9.11756 
(1.19731) (0.125579) (0.126955) (1.14 10

-7
) (0.015503) (0.006063) 

 
 
 

Table 4 
Bayes estimates and the posterior risks (given in parentheses) under jeffreys prior. 

n 
5   

SELF PLF WSELF QQLF SLELF ELF 

20 
r=3, n-s=18 

5.33537 5.45378 4.95872 4.60587 5.19675 4.95209 
(1.07569) (0.291008) (0.291773) (0.000302) (0.064494) (0.025599) 

40 
r=5, n-s=36 

5.13786 5.21716 4.96930 4.78916 5.0666 4.95649 
(0.75365) (0.141998) (0.142007) (0.000088) (0.030767) (0.12469) 

60 
r=7, n-s=54 

5.10566 5.19837 4.97468 4.85221 5.03535 4.95786 
(0.49229) (0.0950113) (0.093877) (0.000043) (0.021052) (0.008242) 

80 
r=9, n-s=72 

5.06014 5.09057 4.98278 4.93334 5.02978 5.01754 
(0.360070) (0.069889) (0.0640041) (0.000027) (0.015747) (0.005918) 

 
Table 5 
Bayes estimates and the posterior risks (given in parentheses) under jeffreys prior. 

n 
9   

SELF PLF WSELF QQLF SLELF ELF 

20 
r=3, n-s=18 

9.57236 9.77527 8.90903 7.49634 9.26752 8.90043 
(5.40728) (0.549732) (0.528919) (0.000012) (0.064494) (0.025599) 

40 9.46732 9.41713 8.92703 8.17871 9.12322 8.98946 
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r=5, n-s=36 (2.40182) (0.258308) (0.255110) (1.13 10
-6

) (0.030767) (0.012469) 
60 
r=7, n-s=54 

9.19865 9.26592 8.95093 8.45766 9.09228 9.01250 
(1.59832) (0.169270) (0.168913) (3.4610

-7
) (0.021052) (0.008242) 

80 
r=9, n-s=72 

9.06331 9.17781 8.99599 8.57278 9.03260 8.99562 
(1.14973) (0.139274) (0.117009) (1.5210

-7
) (0.015747) (0.005918) 

 
Table 6 
Bayes estimates and the posterior risks (given in parentheses) under exponential prior. 

n 
5   

SELF PLF WSELF QQLF SLELF ELF 

20 
r=3, n-s=18 

5.14592 5.19746 4.88107 4.46527 4.93563 4.83442 
(1.46631) (0.263280) (0.271242) (0.000313) (0.060586) (0.024381) 

40 
r=5, n-s=36 

5.11438 5.11754 4.94468 4.67774 4.97820 4.93158 
(0.727349) (0.135950) (0.137376) (0.000093) (0.030767) (0.012176) 

60 
r=7, n-s=54 

5.04997 5.10130 4.97061 4.81099 4.99201 4.95522 
(0.471899) (0.091520) (0.092063) (0.000045) (0.020618) (0.008113) 

80 
r=9, n-s=72 

5.02497 5.07341 4.98150 4.88216 4.99588 4.97235 
(0.353406) (0.068756) (0.063702) (0.000028) (0.015503) (0.006099) 

 
Table 7 
Bayes estimates and the posterior risks (given in parentheses) under exponential prior. 

n 
9   

SELF PLF WSELF QQLF SLELF ELF 

20 
r=3, n-s=18 

8.68498 9.09142 8.31611 7.10907 8.440990 8.31475 
(4.16003) (0.451528) (0.462112) (0.000013) (0.060586) (0.024381) 

40 
r=5, n-s=36 

8.84439 9.05936 8.53135 7.90988 8.72109 8.62070 
(2.16995) (0.239504) (0.237022) (1.3310

-6
) (0.030767) (0.012176) 

60 
r=7, n-s=54 

8.91833 9.04953 8.70212 8.20969 8.77526 8.75455 
(1.47164) (0.162349) (0.161173) (4.0510

-7
) (0.020618) (0.008113) 

80 
r=9, n-s=72 

8.94251 9.04509 8.80830 8.49391 8.86013 8.83115 
(0.957981) (0.120453) (0.112143) (1.7610

-7
) (0.015503) (0.006099) 

 
Table 8 
Bayes estimates and the posterior risks (given in parentheses) under gamma prior. 

n 
5   

SELF PLF WSELF QQLF SLELF ELF 

20 
r=3, n-s=18 

4.86038 4.92933 4.67084 4.36813 4.69282 4.62331 
(1.14488) (0.221630) (0.227908) (0.000267) (0.052623) (0.021779) 

40 
r=5, n-s=36 

4.92062 4.95329 4.79951 4.66174 4.84772 4.80936 
(0.627488) (0.123091) (0.124686) (0.000084) (0.028571) (0.011496) 

60 
r=7, n-s=54 

4.95922 4.96693 4.87245 4.77996 4.87694 4.90818 
(0.434842) (0.085284) (0.086254) (0.000043) (0.019608) (0.007807) 

80 
r=9, n-s=72 

4.96765 5.00488 4.90104 4.82579 4.94684 4.92166 
(0.329846) (0.065699) (0.062742) (0.000028) (0.014927) (0.005925) 

 
Table 9 
Bayes estimates and the posterior risks (given in parentheses) under gamma prior. 

n 
9   

SELF PLF WSELF QQLF SLELF ELF 

20 
r=3, n-s=18 

7.43222 7.59738 7.14111 6.37941 7.26513 7.11246 
(2.63516) (0.34157) (0.34842) (0.000019) (0.052623) (0.021776) 
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40 
r=5, n-s=36 

8.12568 8.20407 7.93131 7.35221 7.97027 7.86598 
(1.70386) (0.203869) (0.206041) (2.0710

-6
) (0.028571) (0.011496) 

60 
r=7, n-s=54 

8.34277 8.47785 8.23122 7.7659 8.31594 8.20961 
(1.22850) (0.145563) (0.145706) (6.1810

-7
) (0.019608) (0.007807) 

80 
r=9, n-s=72 

8.51335 8.51927 8.51960 8.40357 8.54807 8.49527 
(0.967644) (0.114574) (0.112076) (2.5210

-7
) (0.014927) (0.005925 ) 

 
Table 10 
Bayes estimates and the posterior risks (given in parentheses) under in-levy prior. 

n 
5   

SELF PLF WSELF QQLF SLELF ELF 

20 
r=3, n-s=18 

4.67626 4.8 0701 4.42247 4.20880 4.56377 4.44211 
(1.23768) (0.249815) (0.252769) (0.000414) (0.062480) (0.024973) 

40 
r=5, n-s=36 

4.85201 4.92341 4.68724 4.51897 4.84027 4.71898 
(0.66105) (0.132201) (0.132057) (0.000117) (0.031248) (0.012321) 

60 
r=7, n-s=54 

4.87461 4.96465 4.80403 4.67936 4.87159 4.82525 
(0.443122) (0.089873) (0.089808) (0.000054) (0.020833) (0.008177) 

80 
r=9, n-s=72 

4.91181 4.97676 4.87052 4.73760 4.87924 4.87725 
(0.337039) (0.068185) (0.069719) (0.000033) (0.015625) (0.006118) 

 
Table 11 
 Bayes estimates and the posterior risks (given in parentheses) under in-levy prior. 

n 
9   

SELF PLF WSELF QQLF SLELF ELF 

20 
r=3, n-s=18 

7.64419 7.84752 7.33163 6.38845 7.44037 7.24521 
(3.27333) (0.407808) (0.419023) (0.000028) (0.062480) (0.024973) 

40 
r=5, n-s=36 

8.26884 8.39473 8.10603 7.41991 8.22511 8.08924 
(1.91314) (0.225406) (0.228374) (2.4510

-6
) (0.031248) (0.012321) 

60 
r=7, n-s=54 

8.54645 8.56546 8.41949 7.94316 8.46694 8.35261 
(1.36176) (0.155057) (0.157394) (5.6610

-7
) (0.020833) (0.008177) 

80 
r=9, n-s=72 

8.65756 8.74001 8.53004 8.35445 8.60776 8.57610 
(1.044985) (0.121042) (0.120318) (2.3510

-7
) (0.015625) (0.006118) 

 
 

 
Table 13 
The lower (LL), the upper (UL) and the width of the 95% CI under jeffreys prior. 

r ,n, n-s 5   Width 9   Width 

 LL UL  LL UL  

3, 20, 18 2.92981 7.92574 4.99593 5.23712 14.16749 8.93037 
5,40, 36 3.41432 6.86390 3.44958 6.17694 12.41768 6.24074 
7, 60, 54 3.68424 6.50625 2.82201 6.96407 12.29831 5.33424 
9,  80, 72 3.85449 6.30358 2.44909 6.89277 11.27233 4.37956 

 

Table 12 
The lower (LL), the upper (UL) and the width of the 95% CI under uniform prior.   

r ,n, n-s 5   Width 9   Width 

 LL UL  LL UL  

3, 20, 18 3.15183 8.26949 5.11766 5.63399 14.78197 9.14798 
5,40, 36 3.53151 7.02306 3.49155 6.38894 12.70562 6.31668 
7, 60, 54 3.76513 6.61003 2.84490 7.11693 12.49443 5.37750 
9,  80, 72 3.91623 6.38007 2.46384 7.00353 11.40977 4.40620 
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Table 14 
The lower (LL), the upper (UL) and the width of the 95% CI under exponential prior. 

r ,n, n-s 5   Width 9   Width 

 LL UL  LL UL  

3, 20, 18 2.91469 7.64731 4.73262 4.91867 12.90516 7.98649 
5,40, 36 3.39692 6.75541 3.35849 5.96191 11.85638 5.89447 
7, 60, 54 3.66813 6.43973 2.77160 6.77819 11.89974 5.12155 
9,  80, 72 3.83995 6.25581 2.41586 6.76340 11.01851 4.25511 

 
Table 15 
The lower (LL), the upper (UL) and the width of the 95% CI under gamma prior. 

r ,n, n-s 3.5   Width 7   Width 

 LL UL  LL UL  

3, 20, 18 2.91155 7.15406 4.24251 4.44826 10.92998 6.48172 
5,40, 36 3.37322 6.54277 3.16955 5.56992 10.80353 5.23361 
7, 60, 54 3.64179 6.30489 2.66310 6.41487 11.10580 4.69093 
9,  80, 72 3.81482 6.15804 2.34322 6.49959 10.49191 3.99232 

 
Table 16 
The lower (LL), the upper (UL) and the width of the 95% CI under Inverse Levy Prior. 

r ,n, n-s 3.5   Width 7   Width 

 LL UL  LL UL  

3, 20, 18 2.66511 7.09772 4.43261 4.34171 11.56283 7.22112 
5,40, 36 3.24988 6.49766 3.24778 5.58917 11.17473 5.58556 
7, 60, 54 3.56158 6.27096 2.70938 6.47964 11.40887 4.92923 
9,  80, 72 3.75949 6.13637 2.37688 6.55129 10.69325 4.14196 

8. Conclusion 

The simulation study has displayed some interesting properties of the Bayes estimates. After an 
extensive study of results, conclusions are drawn regarding the behavior of the estimators. The risks of 
the estimates seem to be large in case when the value of the parameter is large and small for relative 
smaller value of the parameter except under quasi-quadratic loss function. However, the risks under said 
loss functions are reduced as the sample size increases. Another interesting remark concerning the risks 
of the estimates is that increasing (decreasing) the value of the parameter reduces (increases) the risks of 
the estimates under quasi-quadratic loss function. The performance of squared-log error loss function and 
entropy loss function is independent of choice of parametric value. The above study depicts that the 
estimated value of the parameter converges to the true value of the parameter by increasing the sample 
size. The greater values of the parameter impose a negative impact on convergence and performance of 
the estimates. The effect of the increasing values of the parameter is in the form of underestimation 
assuming each informative prior. The patterns of the estimates discussed above, are almost similar under 
uniform and Jeffreys priors. However, the performance of the uniform prior is better for estimates under 
SLELF, ELF, PLF and QQLF. While for estimates, under SELF and WSELF, the performance of the Jeffreys 
prior is better than uniform prior. In comparison of informative priors, the gamma prior provides the 
better estimates as the corresponding risks are least under said loss functions with few exceptions.  While 
the exponential prior turns out to perform better under QQLF for larger values of the parameter, 
therefore it produces more efficient estimates as compared to other informative priors. 

After an extensive study of the results, thus obtained, we observed that the risks of the estimators 
under doubly type II censored data assuming uniform prior behave similarly to the risks of the estimators 
under exponential prior  under SLELF and ELF.  In addition, estimates under quasi-quadratic loss function 
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give the minimum risks among all loss functions for each prior. The Credible interval are in accordance 
with the point estimates, that is, the width of credible interval is inversely proportional to sample size 
while, it is directly proportional to the parametric value. From the Table 12-16, appended above, reveal 
that the effect of the parametric values in the form of larger width of interval. The Credible interval 
assuming gamma prior is much narrower than the credible intervals assuming informative and non-
informative priors. It is the use of prior information that makes a difference in terms of gain in precision. 
The study can further be extended by considering generalized versions of the distribution under variety of 
circumstances.  
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