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A B S T R A C T 

 

In this research, prevalence values based on Monthly Biting 
Rates (MBR) were employed as a response variable in a Poisson 
probability model framework for quantitatively regressing multiple 
georefernced explanatory environmental-related explanatory 
covariates of seasonally-sampled larval habitat of Similium 
damnosum s.l.a black fly vector of Onchocerciasis  in a riverine study 
site in Burkina Faso. Results from both a Poisson and then a negative 
binomial (i.e., a Poisson random variable with a gamma distrusted 
mean) revealed that the covariates rendered from the model were 
significant, but furnished virtually no predictive power for mapping 
endemic transmission zones. Inclusion of indicator variables denoting 
the time sequence and the locational spatial structure was then 
articulated with Thiessen polygons which also failed to reveal 
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meaningful covariates. Thereafter, a spatiotemporal autocorrelation 
analyses was performed and an Autoregressive Integrated Moving 
Average (ARIMA) model was constructed which revealed a prominent 
first-order temporal autoregressive structure in the sampled 
covariate coefficients. A random effects term was then specified 
which included a specific intercept term that was a random deviation 
from the overall intercept term based on a draw from a normal 
frequency distribution. The specification revealed a non-constant 
mean across the riverine study site. This random intercept 
represented the combined effect of all omitted covariates that 
caused the sampled georeferenced riverine –based villages at the 
study site to be more prone to onchocerciasis based on regressed 
seasonal prevalence rates. Additionally, inclusion of a random 
intercept assumed random heterogeneity in the propensity or, 
underlying risk of onchocerciasis which persisted throughout the 
entire duration of the time sequence under study. This random 
effects term displayed serial correlation, and conformed closely to a 
bell-shaped curve. The model’s variance implied a substantial 
variability in the prevalence of onchocerciasis across the study site 
based on the spatiotemporal-sampled covariates. The model 
contained considerable overdispersion (i.e., excess Poisson 
variability): quasi-likelihood scale = 69.565. The following equation 
was then used to translate and  forecast the expected classification 
value of the prevalence of onchocerciasis into  hyperendemic(0-km), 
(5km to 10 km) mesoendemic,(10-15km) hypoendemic transmission 
zones at the study site  based on the sampled S. damnosum s.l. 
prevalence rate =  exp[-2.9147 + (random effect)i]. Seasonally 
quantitating random effects term estimates, allowing research 
intervention teams to improve the quality of the forecasts for future 
onchocerciasis-related predictive autoregressive regression risk-
based modeling efforts based on field-sampled S. damnosums.l. 
explanatory  covariates. 

© 2013 Sjournals. All rights reserved. 

1. Introduction 

Onchocerciasis is one of the most important causes of blindness worldwide.  The disease is caused by the 
filarial nematode parasite Onchocerca volvulus (www.who.com). The parasite is transmitted by black flies 
(Similium damnosum s.l.) that develops as larvae in fast running rivers and streams. As such, disease transmission 
is most intense in and around the river basins, rendering many such areas uninhabitable by migrating human 
populations. Unfortunately, the areas bordering the river basins contain much of the fertile land in sub-Saharan 
African savanna ecosystems. This means that these flies are quite localized within lotic ecosystems in sub-Saharan 
Africa. This also means that unlike malaria and many other tropical diseases, the distance that an adult black fly 
can disperse from its riverine origin in search of a blood meal can be employed as an explanatory covariate 
coefficient to delineate the geographic distribution of onchocerciasis in a regression- based model to forecast 
endemic (e.g., hyperendemic, mesoendemic, hypoendemic)  transmission zones. 

Historically, regression modeling spatiotemporal-sampled S. damnosum s.l.riverine  larval habitats has been 
based on a Poisson distributions in SAS (e.g., PROC GEN MOD) using a single seasonal-sampled dataset of density-
related count data (e.g., larval, adult) for simulating and forecasting endemic transmission-oriented linear-related 
probability risk mapping regions (Jacob et al., 2012; Toe et al., 1997; Boatin et al., 1997).  In probability theory and 
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statistics, the Poisson distribution in SAS is a discrete probability distribution that expresses the probability of a 
given number of events occurring in a fixed interval of time and/or space if, these events occur with a known 
average rate and are independent of any previous time series related similar sampling events.  Given an empirical 
spatiotemporal dataset of S. damnosum s.l. –related explanatory covariate coefficients θ and an input vector x, the 

mean of the predicted Poisson distribution can then be provided by ( Haight, 1967).  Thereafter, the 

Poisson distribution's probability mass function can be calculated by . 
For example, if a vector ecologist is given an empirical spatiotemporal dataset consisting of m vectors 

, along with a set of m geosampled  S. damnosum s.l. explanatory covariate coefficient 

values  (e.g., prevalence rates Monthly biting rates, ) then, for the  given parameters estimators 
θ, the probability of attaining a particular optimal empirical-based subset of  hierarchically forecasted covariates of 

significance can be parsimoniously rendered by ( McCulloch and 
Searle, 2005). By then employing a method of maximum likelihood, the empirical dataset of θ would  the predicted 
probability as large as possible to seasonally quantitate Euclidean distance-based thresholds of endemic regions. 
To do this, the time series dependent linear  S. damnosum s.l.-related predictive regression equation must be first 

written as a likelihood function in terms of θ: . Note, the expression on the right hand 
side of the equation has not actually changed in this expression thus, any sampled explanatory covariate 
coefficient variability may be mispecified. As such, any residually forecasted estimates from any time series 
dependent regression-based endemic transmission-oriented formula would be impossible to work with.  

A log-likelihood [e.g., ] [1.1]may then be 
employed for accurately regressing spatiotemporal geopredictive  S. damnosum s.l.-related endemic transmission-
oriented parameter estimators. In such circumstances the estimator θ would only appear in the first two terms of 
each term in the summation. Given that generally an infectious disease vector ecologist is usually only interested 
in finding the optimal  covariate coefficient value for θ ,associated to a productive  seasonal- sampled riverine  

habitats [1,2,3]based on spatiotemporal field-sampled count data .may be 
instead employed by dropping  the yi! The only requirement to quantitate a robust maximum threshold, 

thereafter, would be to insert an additional estimator [e.g., ] in the predictive regression-based 

equation. After doing so, the negative log-likelihood, , would be represented as a convex function, and 
so standard convex optimization techniques such as gradient descent may then be applied to find the optimal 
value of θ in a  seasonal geopredictive map targeting  onchocerciasis endemic transmission zones. 

In gradient-descent methods, the parameter vector is a column vector with a fixed number of real-valued 

components, (the `T' here denotes transpose), and is a smooth 

differentiable function of for all  (Haight, 1967). This first-order optimization algorithm may solve a system 
of linear geopredictive onchocerciasis endemic transmission regression-based equations in a robust 
spatiotemporal model by  reformulating the  model within a quadratic minimization framework (e.g., least 
squares). Solution of  in the sense of linear least squares can then be defined by minimizing the 

function  in the model. In traditional linear least squares for real A and b, the Euclidean norm is 

commonly applied in which case (McCulloch and Searle, 2005). In this case, the line 
search minimization for locating the locally optimal step size on every iteration in the spatiotemporal 
geopredictive onchocerciasis endemic transmission-oriented model, can be calculated analytically utilizing explicit 
formulas for seasonally quantitating the locally known optimal  sampled values associated to endemic 
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transmission sites. To find a local minimum of a function in the  spatiotemporal endemic transmission-oriented 
onchocerciasis-related  gradient descent predictive model thereafter, would  require simply taking steps 
proportional to ascertaining the negative of the gradient or, of the approximate gradient of the function at a 
specific ground control point (e.g., capture point). Gradient descent is based on the observation that if the 

multivariable function is defined and differentiable in a neighborhood of a point , then decreases 

fastest if, the computation goes from  in the direction of the negative gradient of  at , [i.e.,

](McCulloch and Searle, 2005). It thus, follows that if, for  varying ArcGIS Euclidean-
distance based seasonal-sampled endemic transmission-oriented measurements in the empirical sampled time-
series dependent S. damnosum s.l. observational dataset then  the  significance of the explanatory covariates can 

be  determined then .  
With this observation in mind, any infectious disease vector ecologist could quantitate  for a local 

minimum of , and  then consider the sequence such that  
based on seasonal sampled. onchocerciasis endemic-related transmission-oriented ArcGIS-Euclidean distance-

based estimators. Thereafter, the series  can be employed so the sequence 

 can converge to the desired local minimum for comparing the distance-based measurements. Note, that the 
value of the step size  can be allowed to change at every iteration during the endemic transmission risk model 
construction phase. With certain assumptions, however, on the function , convex and , Lipschitz and 
particular choices of (e.g., a line search that satisfies the Wolfe conditions)the sampled  S. damnosum s.l. riverine 
larval habitat explanatory covariate coefficients  would  converge to a local minimum. In the unconstrained 
minimization problem, the Wolfe conditions are a set of inequalities for performing inexact line search, especially 

in quasi-Newton methods whereby,  a univariate function is restricted to the direction as 

 (McCulloch and Searle, 2005).  In optimization, quasi-Newton methods (i.e., a special 
case of variable metric techniques ) quantitate  local maxima and minima of functions based on assumptions that 
function are locally approximated as a quadratic in the region around the optimum employing first and second 
derivatives (Nielsen, 1897). Therefore, hypothetically, a step length could satisfy the Wolfe conditions in a 
spatiotemporal geopredictive onchocerciasis endemic transmission-oriented ArcGIS/SAS based model if, the 

following two inequalities hold: and 

 with ;whereby, would be a descent direction of 

forecasted onchocerciasis endemic transmission zones based on   . Subsequently, Gradient 
descent can also be employed to solve a system of nonlinear onchocerciasis. endemic transmission-oriented 
predictive  regression-based  equations (e.g.,  spatial autocovariate). 

Unfortunately, gradient descent has problems with pathological functions such as the Rosenbrock function 

[i.e, ]. Commonly, the Rosenbrock function has a narrow curved 
valley which contains the minimum values. Therefore, the “bottom of the valley” in the spatiotemporal 
geopredictive onchocerciasis endemic transmission ArcGIS/SAS-based model may be very flat regardless of 
regression outcomes. Because of the curved flat valley, the optimization would then “zig-zag”: slowly with small 
step sizes in the endemic transmission–oriented risk model towards the minimum threshold values for delineating 
the transmission-oriented explanatory covariate coefficients. The global minimum would therefore be inside a 
long, narrow, parabolic shaped flat valley. Regardless, to find the valley in a robust predictive onchocerciasis 
endemic transmission-oriented model would still be rather difficult. For example, to converge to the global 
minimum may require employing another a spatial autocorrelation algorithm (e.g., eigenfunction decomposition). 
Other limitations for employing gradient descent for constructing a robust spatiotemporal geopredictive endemic 
transmission-oriented onchocerciasis model would be that the residuals would be relatively slow close and, as 
such, the asymptotic rate of convergence in the model residual forecasts would be of inferior quality.  For example, 
suppose that the sequence {X} converges to the number L in the model. This sequence would then converge 
linearly to L, if there exists sampled endemic transmission-oriented explanatory covariates μ ∈ (0, 1) such that

The number μ  in the geopredictive ArcGIS/SAS-based risk model would then represent 
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the rate of convergence. If the sequence converges, and μ = 0, then the sequence would converge superlinearly 
and if  μ = 1, then the sequence is said to converge sublinearly.  If the sequence converges sublinearly in the 
ArcGIS/SAS-based onchocerciasis endemic transmission-oriented riverine model and additionally

then the sequence {xk} would converge logarithmically to L thus indicating prolific 
endemic areas on a risk map. A vector ecologist may also distinguish super linear rates of convergence. As such, in 
the time series onchocerciasis endemic transmission -oriented model the sequence could be understood to 

converge with order q to L for q>1  which would then  indicate all Euclidean-
distance based thresholds. This may however require convergence with order 2 (i.e., quadratic convergence)or  3  
(e.g., cubic convergence ) such as commonly encountered in Q-linear convergence and  Q-quadratic convergence. 

 For poorly conditioned convex problems in the time series onchocerciasis endemic transmission  oriented 
model, the gradient descent would then  increasingly zigzag  as the gradients point (e.g., georefernced stratified 
village boundaries) then  would be nearly orthogonal to the shortest direction to a minimum point (e.g., 
georeferenced epidemiological riverine capture point). Although locally Lipschitz problems and convex 
minimization problems can render bundle methods of descent which could be well-defined unfortunately, the 
forecasted residual non-differentiable functions would be ill-defined. A function which jumps is not differentiable 
at the jump nor is one which has a cusp, like |x| has at x = 0 (Toe et al., 1997). 

Given two metric spaces (X, dX) and (Y, dY), where dX denotes the metric on the set X and dY is the metric on 
set Y (for example, Y might be the set of real numbers R with the metric dY(x, y) = |x − y|, and X might be a subset 
of R), a function f : X → Y is called Lipschitz continuous if there exists a real constant K ≥ 0 such that, for all x1 and 

x2 in X,  92]Any such K is referred to as a Lipschitz constant for the 
function f. The smallest constant is sometimes called the (best) Lipschitz constant; however in most cases the 
latter notion is less relevant. If K = 1 the function is called a short map, and if 0 ≤ K < 1 the function is called a 
contraction. The inequality is (trivially) satisfied if x1 = x2. Otherwise, one can equivalently define a function to be 

Lipschitz continuous if and only if there exists a constant K ≥ 0 such that, for all x1 ≠ x2, 
For real-valued functions of several real variables, this holds if and only if the absolute value of the slopes of all 
secant lines are bounded by K. The set of lines of slope K passing through a point on the graph of the function 
forms a circular cone, and a function is Lipschitz if and only if the graph of the function everywhere lies completely 
outside of this cone. 

Further a function is called locally Lipschitz continuous, if for every x in X there exists a neighborhood U of x 
such that f restricted to U is Lipschitz continuous(McCulloch and Searle, 2005). Equivalently, if X is a locally 
compact metric space, then f is locally Lipschitz if and only if it is Lipschitz continuous on every compact subset of 
X. In spaces that are not locally compact, this is a necessary but not a sufficient condition. More generally, a 
function f defined on X is said to be Hölder continuous or to satisfy a Hölder condition of order α > 0 on X if there 

exists a constant M > 0 such that for all x and y in X.  
Hölder spaces consist of functions satisfying a Hölder condition that are basic in areas of functional analysis 

relevant to solving partial differential equations in dynamical systems (Toe et al., 1997). The Hölder space Ck, α(Ω), 
is where Ω is an open subset of some Euclidean space and k ≥ 0 an integer, consisting of those functions on Ω 
having continuous derivatives up to order k, such that the kth partial derivatives are Hölder continuous with 
exponent α, where 0 < α ≤ 1(McCulloch and Searle, 2005). Sometimes a Hölder condition of order α is also called a 
uniform Lipschitz condition of order α > 0.Therefore , in a spatiotemporal geopredictive onchocerciasis endemic 
transmission model, a Hölder space would be a locally convex topological vector space.   

The category of topological vector spaces over a given topological field K can then commonly denoted TVSK 
or TVectK. The objects would then  be the topological vector spaces over K and the morphisms which would be  
the continuous K-linear predictive time series dependent onchocerciasis  endemic transmission-oriented 

ArcGIS/SAS-based risk maps. For example, if the Hölder coefficient is finite, in 
the endemic transmission model residual forecasts, then the function f would be  said to be uniformly Hölder 
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continuous with exponent α in Ω. In such circumstances, the Hölder coefficients would serve as a seminorm in the 
endemic transmission-oriented model residual forecasts targeting the statistically significant endemic 
transmission-oriented explanatory covariate coefficients. If the Hölder coefficient was merely bounded on 
compact subsets of Ω, then the function f could be categorized  locally into Hölder continuous  variables with 
exponent α in Ω. Additionally, if the function f and its derivatives up to order k are bounded on the closure of Ω in 

the spatiotemporal onchocerciasis endemic transmission model residuals, then the Hölder space could 

be assigned the norm when β ranges over the multi-indices in the model and

.These norms and seminorms could then  be theoretically  denoted simply 

and or, also and in order to stress the dependence on the domain of f in the  
geopredictive endemic transmission-oriented risk model residual forecasts . 

 Further, if Ω is open and bounded, then would be a Banach space in the predictive S. endemic 

transmission risk model with respect to the norm . A normed space X is said to be a Banach space if, for 

every Cauchy sequence there exists an element x in X such that (McCulloch and 
Searle, 2005). A sequence of real numbers is called Cauchy, if for every positive real number ε, 

there is a positive integer N such that for all natural numbers m, n > N where the vertical bars 
denote the absolute value (Toe et al., 1997).  Therefore, a Cauchy sequence would be q sequence in a predictive 
spatiotemporal geopredictive onchocerciasis endemic transmission model whose elements become arbitrarily 
close to each other as the sequence progression for classifying endemic transmission zones based on 
spatiotemporal field-sampled count data. More precisely, given any small distance (e.g., Euclidean distance 
ArcGIS/SAS-based measurement from a prevalence stratified village), all but a finite number of sampled elements 
of the sequence would be spatiotemporally quantitated employing the   aggregated  seasonal-sampled 
measurements.  

In terms of Lipschitz and Hölder continuous functions in a predictive spatiotemporal riverine larval habitat 
endemic transmission-oriented model, the argument rendered may prove slightly more efficient, especially if ,,ƒn- 
is a uniformly bounded sequence of real-valued functions on *a,b+ such that each ƒ is Lipschitz continuous with the 

same Lipschitz constant K:  whereby all x, y ∈ *a,b+ and all ƒn, represent  a 
subsequence residual forecast  that converges uniformly on [a,b]. The limit function in the endemic transmission-
oriented risk model would thereafter render Lipschitz continuous with the same value K for the Lipschitz constant. 
A slight refinement in the seasonal predictive model may be also then attained by employing a set F of functions ƒ 
on [a, b] that are uniformly bounded for satisfying  a Hölder condition of order α, 0 < α ≤ 1, within a fixed 

constant M,  . The onchocerciasis endemic transmission-
oriented model then would be relatively compact in C([a, b]). In particular, the unit ball of the Hölder space  
C 0, α(*a, b]) would be  compact in C([a, b+). Unfortunately,  sometimes a Hölder condition of order α like a uniform 
Lipschitz condition of order α > 0 may  not exist in the predictive residuals as   a K ≥ 1 wit

. In such circumstances ƒ would then be a bilipschitz.  
 
Another alternative for non-differentiable functions in an endemic transmission-oriented model would be to 

"smooth" the function, or bound the function by a smooth function.. Many attempts already exists, in 
particular,the so-called fractional derivative of Riemann–Liouville, Liouville Weyl, and Marchaud [1, 16]. The 

Riemann–Liouville integral is defined by where Γ is the 
Gamma function and a is an arbitrary but fixed base point. The integral is well-defined provided ƒ is a locally 
integrable function, and α is a complex number in the half-plane re(α) > 0(McCulloch and Searle, 2005). The 
dependence on the base-point a is often suppressed, and represents a freedom in constant of integration. Clearly 
I1ƒ is an antiderivative of ƒ (of first order), and for positive integer values of α, Iαƒ is an antiderivative of order α by 
Cauchy formula for repeated integration. Another notation, which emphasizes the basepoint, is[ 
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This also makes sense if a = −∞, with suitable restrictions on ƒ. 

The fundamental relations hold the latter of which is a 
semigroup property (Jacob, et., 2012). These properties make possible not only the definition of fractional 
integration, but also of fractional differentiation, by taking enough derivatives of Iαƒ.  

         Unfortuntely Riemann–Liouville integral are based on a generalization of the Cauchy formula. Hence, 
there is no geometric idea supporting these generalizations for, explaining the difficulties of using it in order to 
obtain information about the structure of non-differentiable objects in a geopredictive onchocerciasis  endemic 
trasnmission oriented model. Moreover, fractional derivatives are all non-local on the contrary of the classical 
derivative. For example, the Riemann–Liouville for a onchocerciasis endemic transmission oriented model  
derivative would depend on a free parameter which relies on a global information on the function. The study of 
non-differentiable functions via these operators would then be difficult.  Although Kolvankar and Gangal 
developed the notion of local fractional derivative by allowing  a fine study of the local structure of irregular (i.e., 
fractal) functions this tool would not extend classical theorems of analysis (e.g., extrema, Rolle) for quantitating 
non-differentiable functions in a onchocerciasis 
sis geopredictive endemic transmission oriented  model. Thus the local fractional derivative would not allow us to 
obtain precise results on the behavior of non-differentiable functions in the risk model 

 
Further, probability statistics in the endemic. transmission-oriented ArcGIS/SAS-based model can be 

rendered by the limit of a binomial distribution  . In these models the binomial 

distribution can provide the discrete probability distribution for  obtaining exactly n successes ( e.g., 
predicted and field-validated prolific sampled larval habitat areas  based on seasonal-sampled count data)  out of N  

Bernoulli trials  but, only when the result of each Bernoulli trial is true and when the probability is  false whereby, 

the probability  is mandated in the regression estimation procedure. Bernoulli trials consists of 
independent trials with two outcomes with constant probabilities from trial to trial which can lead to generating 
several important probability distributions: (e.g., binomial, geometric, and negative binomial) (Toe et al., 1997). A 
discrete S. damnosum s.l. –related  probability distribution derived from regressing time series dependent 
Euclidean distance based measurements   can then be derived as a probability distribution characterized by a 
probability mass function (pmf).  In probability theory and statistics, a probability mass function is a function that  
provides the probability that a discrete random variable is exactly equal to some value (Boatin et al., 1997).The  
pmf may thus be the primary means for defining a discrete  geopredicted probability distribution in a 
spatiotemporal regression equation where functions exist for either scalar or multivariate random variables, given 
that the distribution is discrete (Jacob, et., 2012). 

Further, this spatiotemporal quantitated pmf would allow a randomly forecasted  single seasonal- sampled 
onchocerciasis endemic transmission-oriented model explanatory observational  geopredictor variable to assume 
only a finite or count ably infinite number of the sampled values. The pmf is often the primary means of defining a 
discrete  infectious disease arthropod--borne time series –related probability distribution, and such functions exist 
for either scalar or multivariate random variables, given that the distribution is discrete (Toe et al., 1997). For 

example,  Jacob et al. (2012)  supposed that X: S → A (A R) was a discrete random variable in a robust seasonal 
sampled ArcGIS/SAS-based risk model which was  defined on a sample space S where the pmf fX: A → *0, 1+ for X 

was  defined as .for forecasting prolific habitats in a stochastic 
interpolator. Note that fX in the model was defined for all the sampled riverine larval habitat sampled values 

including those not in X  therefore ,  fX(x) = 0 represented  x X(S) in the residual forecasts. The same definition 
was applied for a discrete multivariate random variable dataset where X: S → An in  a  field validation model which  
was derived in a similar fashion from the seasonal-sampled S. damnosum s.l. riverine larval habitat  empirical 
dataset but employing  only that scalar values  which the authors replaced by vector values. In their research the 

probability values for all X were equal to 1 [i.e., ]. Since X was countable, the pmf  fX(x) in the model 
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was zero, thereafter, for all but a few explanatory endemic transmission-oriented covariate coefficients values of x. 
The discontinuity of  pmf was then found to be related to the fact that the cumulative distribution function of a 
discrete random variable was also discontinuous in the model residuals. Thereafter, the authors noted that the 
seasonal sampled S. damnosum s.l. riverine larval habitat model derivative was zero also when the residual 
estimates were differentiable and the pmf was zero for all sampled larval habitat points. The binomial distribution 

was then provided by = =  where  was a binomial coefficient. This 
procedure allowed parsimonious derivation of robust non-biased linear residual estimators. The final seasonal 
geopredictive model revealed areas of abundant habitats based on spatiotemporal  field-sampled count data.   

Note, this parameter estimation regression procedure would have to be statistically altered and expanded for 
accommodating and regressing a large spatiotemporal-dependent dataset of  S. damnosum s.l. riverine larval 
habitat explanatory covariate coefficients in order to delineate onchocerciasis endemic trasnmission zones. 

Fortunately, however, the binomial coefficient  has a number of ways of  selecting k unordered outcomes 
from n possibilities, also known as a combination or combinatorial number which can help render a suitable matrix 
and error estimator for an  empirical seasonal sampled dataset of  explanatory onchocerciasis transmission-
oriented regressors. This family of numbers arises in many other areas than algebra, notably in combinatorics. For 
any empirical dataset containing n elements of seasonal-sampled ArcGIS/SAS-based  Euclidean-based 
measurements, the number of distinct k-element subsets may then  be formed by the k-combinations of its 

elements given by the binomial coefficient [ 5]  Fortunately, the properties of binomial coefficients have led to 

extending the meaning of the symbol beyond the basic case where n and k are nonnegative integers with k ≤ 
n; such expressions are then still called binomial coefficients (Haight, 1967). A such, a robust multi-seasonal-
sampled onchocerciasis endemic transmission model dataset may then be tested to determine whether C(n, k), 
nCk, nCk, Ckn, Cnk,   may be employed for suitable parameter estimation and residual quantitation of any 
uncertainty estimates whereby, all the C stands for combinations or various distant based choices georeferenced 
from a capture point (S. damnosum s.l. riverine larval habitat) 0km to 5km, 5 km to 10km etc.].  

 For example, the symbols and may denote a multi-seasonal customized binomial coefficient. For 
this in a time series empirical dataset the number of k-subsets possible outcomes from a set of n distinct items can 

be regressed.  Thereafter, the number of lattice paths from the origin to a point )  in the forecasted 
model  distribution would then be a family of positive integers that occur as coefficients [i.e., the binomial 

coefficient ].  The value of the binomial coefficient for nonnegative n and k in the model may then be 

theoretically rendered explicitly by  in PROC REG, for example, where denotes a 

factorial (wwwsas.edu). Writing the factorial as a gamma function  would then allow the time-series 

dependent  binomial coefficient to be generalized to non-integer arguments including complex and  as 

.For nonnegative integer arguments, the gamma function would then  reduce to 

factorials, leading to   when  0<k<n  or, otherwise to Pascal's triangle in the onchocerciasis 
endemic transmission model resdiual forecast targeting the endemic trasnmission-oriented explanatory covariate 
coefficients .  

Pascal's triangle is a number triangle with numbers arranged in staggered rows such that 

 where is a binomial coefficient (Nielsen, 1897) Pascal's triangle contains the figurate 
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numbers along its diagonals, as can be seen from the identity = = .In addition, the sum of 
the elements of the i th row in a  time series dependent model (e.g., multivariate seasonal  S. riverine  endemic 

transmission-oriented ArcGIS/SAS-based regression matrix) would be    so the sum of the first rows 

(i.e., rows 0 to ) would be  the Mersenne number  Mersenne number is a number of the form 

 where n  is an integer consisting of all 1s in base-2, and are therefore binary repunits (Boatin et al., 
1997). 

The characteristic function for the binomial distribution in the onchcerciasis endemic transmission-oriented 
regression Euclidean distance –based risk model can then be linearly adjusted and thereafter be   represented as 

 employing the Mersenne number. This linearization would involve viewing the distribution as a 

function of the expected number of successes  instead of the sample size for a fixed in the endemic 
transmission-oriented model. An estimation model that initially is expressed as: 

 would then subsequently transformed, for example,  to 

 . By so doing, this would allow expanding the multi-seasonal S. 
damnosum s.l. model  sample size quantitation capability. Further, As t N becomes large, the distribution would 

approach =  ( i.e.,  the Poisson distribution).   It is important to mention that the sample size N    
would completely drop out of the probability function in the lineally transformed endemic transmission-oriented 
model but, it would still have the same functional form for all the spatiotemporally-sampled values of v. 
Thereafter, the Poisson distribution can be normalized so that the sum of probabilities in the multi-multiseasonal 

onchocerciasis endemic trasnmission-oriented model equals 1, since   (Toe 
et al., 1997). The ratio of probabilities of the sampled Euclidean-based ArcGIS/SAS-based explanatory regression-

based explanatory covariate coefficients could then be rendered  by .The Poisson 

distribution would however would reach a maximum when  where  would 
eventually become the Euler-Mascheroni constant .  

The Euler-Mascheroni constant can be defined in the onchocerciasis endemic transmission-oriented 

regression Euclidean distance –based ArcGIS/SAS-based risk model  as the limit of the sequence =

=  where is a harmonic number. In mathematics, the n-th harmonic number 

is the sum of the reciprocals of the first n natural numbers:  which 
intresetingly also equals n times the inverse of the harmonic mean  (i.e., t (M−1) of the power mean) of natural 
numbers (i.e.,multi-seasonal sampled Euclidean-distance based   S. damnosum s.l. endemic transmission-oriented 
explanatory covariate coefficients) (Toe et al., 1997). The constant can be implemented in Mathematica as Euler 
Gamma for quantitating the spatiotemporal-sampled S endemic transmission-oriented explanatory covariate 
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coefficients. Although developmental versions of Mathematica can compute to digits in 2.7 CPU-hours and 

digits in 1.9 CPU-days on modern hardware, no quadratically converging algorithm for computing is presently 
known for accommodating multi-seasonal onchocerciasis geopredictive regression-based modeling or, for that 
matter any time series dependent vector arthropod-borne disease empirical-sampled distribution .By definition 

the Euler-Mascheroni constant may be defined, however also as the limit of the sequence = =

where is a harmonic number (Toe et al., 1997). By so doing, the correct number of the form 

 would arise from truncation of the harmonic series leading to the transcendental equation 

 which may then be employed thereafter to robustly quantitate multi-seasonal  onchocerciasis 
endemic transmission-oriented model parameter estimators. 

Although the nth factorial moment of the Poisson distribution in the spatiotemporal onchocerciasis endemic 
transmission-oriented risk model would be λn, the higher moments mk of the Poisson distribution about the origin 

would  be expressed as Touchard polynomials λ: *i.e.,  ] in order to effectively determine prolific 
areas of disease transmission (e.g., hyperendemic transmission zones). The Touchard polynomials comprise a 
polynomial sequence of binomial type defined by S(n, k) where is a Stirling number of the second kind.  In 
combinatorics, Stirling numbers of the second kind S(n,k) count the number of equivalence relations having k 
equivalence classes defined on a set with n elements. Thus, if X is a random variable with a Poisson distribution in a 
robust  spatiotemporal S. damnosum s.l. riverine larval habitat linear geopredictive  model with expected value λ, 
then its nth moment is E(Xn) = Tn(λ).   Furthermore, if X is a random sampled explanatory predictor variable in the 
multi-seasonal  endemic transmission-oriented risk model with a Poisson distribution with expected value λ, then 

its nth moment would be E(Xn) = Tn(λ), leading to the definition: . Thereafter, if so desired, 
the infectious disease vector ecologist can  quickly prove that this polynomial sequence is of a binomial type in  a 
robust  linear-dependent geopredictive seasonal S. damnosum-related regression -based ArcGIS/SAS-based risk 
model by determining first if the  regression residuals rendered satisfies the sequence of identities: [e.g., 

 ] [see 6]. The Touchard polynomials make up the only polynomial sequence of 
binomial type in a time series-dependent linear hierarchical risk model in which the coefficient of the 1st-degree 

term of every polynomial is 1 using  (Toe et al., 1997). Further, the Touchard 

polynomials may also satisfy the recursion using and in a 
spatiotemporal  geopredictive onchocerciasis endemic transmission-oriented risk model. 

However, in computing Touchard polynomials for a robust spatiotemporal geopredictive onchocerciasis 

endemic transmission-oriented risk model, the equation  would have to be employed 
initially for accurately determining the significance of the spatiotemporal sampled endemic transmission-oriented  
explanatory covariate coefficients [see 2] which would then require Stirling numbers of the second kind. [see 5]. In 
mathematics, particularly in combinatorics, a Stirling number of the second kind is the number of ways to partition 

a set of n objects into k non-empty subsets and is denoted by or (Toe et al., 1997). Stirling numbers of 
the second kind occur in the field of mathematics called combinatorics and the study of partitions .Stirling 
numbers of the second kind is one of two kinds of Stirling numbers, the other kind being called Stirling numbers of 
the first kind. Mutually inverse (i.e., finite or infinite) triangular matrices can then be formed by arranging the 
Stirling numbers of the first respectively second kind according to the parameters n, k generated for attaining  an 
optimal endemic transmission-oriented geopredictive time series dependent model residual forecast. 
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A triangular matrix is a special kind of square matrix and a square matrix is called lower triangular if all the 
entries above the main diagonal are zero (Toe et al., 1997). Conversely a square matrix in a multi-seasonal 
geopredictive onchocerciasis endemic transmission-oriented ArcGIS/SAS-based risk model would be an “upper 
triangular” if all the entries (i.e., sampled georeferenced explanatory predictor covariate coefficients)  below the 
main diagonal are zero. A triangular matrix is one that is either lower triangular or upper triangular (Haight, 
1967).Therefore, ideally riverine endemic transmission-oriented regression-based predictive matrix that is both 
upper and lower triangular would have a diagonal matrix of the form 

 
[i.e., a lower triangular matrix or left triangular matrix], and analogously a matrix of the form 

 
{i.e., an upper triangular matrix or right triangular matrix]. The variable L (standing for lower or left)would 

then  represent a lower triangular spatiotemporal matrix, while the variable U (standing for upper) or R (standing 
for right) would be used for upper triangular matrix. A matrix that is both upper and lower triangular is diagonal 

(Toe et al., 1997). Thereafter, all these ways of partitioning a set of n elements into m nonempty sets (i.e., set 
blocks) collectively could be considered when rendering a  Stirling set number for constructing a robust 
spatiotemporal geopredictive onchocerciasis endemic transmission-oriented model. The Stirling numbers of the 

second kind is commonly implemented in Mathematica as StirlingS2[n, m], and then denoted 
(http://mathworld.wolfram.com/Euler-MascheroniConstant.html). 

 When the response variable in the geopredictive spatiotemporal onchocerciasis riverine endemic 
transmission-oriented model  has  a Normal distribution, however,  the mean may be linked to a set of predictor 
variables employing a linear function like Y = β0 + β1X1 + β2X2 …….+βk Xk. .Unfortunately, in the case of binary 
regression the fact that probability lies between 0-1 imposes a constraint. The normality assumption of multiple 
linear regression of the sampled explanatory covariates would be then lost, and so would the assumption of 
constant variance in the model residual forecast. Without these assumptions the F and t tests will have no basis in 
an endemic transmission-oriented model. One solution is to use the logistic transformation of the probability p or 
logit p, such that loge(p/1− p) = β0 + β1Χ1 + β2Χ2…….βnΧn. The β coefficients could then be interpreted as 
increasing or decreasing the log odds of a seasonal tabulated event, and expβ (i.e., the odds multiplier) could then 
be used as the odds ratio for a unit increase or decrease in the sampled explanatory variable. Further, when the 
response variable is in the form of a seasonal count a different constraint in the predictive endemic model may be 
encountered. Counts are all positive integers and for rare events the Poisson distribution (rather than the Normal) 
is more appropriate since the Poisson mean > 0(Toe et al., 1997). So the logarithm of the response variable in the 
predictive spatiotemporal S. damnosum s.l. predictive model would then be linked to a linear function of the 
sampled  endemic transmission-oriented explanatory covariate coefficients such that loge (Y) = β0 + β1Χ1 + β2Χ2 … 
etc. and so Y = (eβ0 ) (eβ1Χ1) (eβ2Χ2) .. etc. In other words, the typical Poisson regression endemic transmission-
oriented model would express the log outcome rate as a linear function of an empirical dataset of observational 
predictors. The assumptions in the endemic transmission-oriented model would then include: 1). logarithm of the 
Onchocerciasis rate changes linearly with equal increment increases in the exposure variable.  2). changes in the 
rate from combined effects of different exposures or risk factors are multiplicative 3). at each level of the 
regressed explanatory covariate coefficients and the number of cases has variance equal to the mean.  4). 
observations are independent (Toe et al., 1997) Methods to identify violations of assumption (i.e. to determine 
whether variances are too large or too small include plots of residuals versus the mean at different levels) of the 
predictor variable could also be determined. Recall that in the case of normal linear regression, diagnostics of the 
model employ plots of residuals against fits (fitted values). This means that the same diagnostics can be used in the 
case of Poisson regression of an empirical spatiotemporal dataset of geopredictive onchocerciasis endemic 
transmission-oriented explanatory predictor covariate coefficients for targeting onchocerciasis endemicity.  

On occasion, however, the negative binomial distribution can be used as an alternative to the Poisson 
distribution especially in its alternative parameterization state. This distribution is especially useful for discrete 
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data over an unbounded positive range whose sample variance exceeds the sample mean. In such cases, the 
spatiotemporal-sampled observations [e.g., time series  S. damnosum s.l. explanatory covariate coefficients] are 
overdispersed with respect to a Poisson distribution for which the mean is equal to the variance. Since the 
negative binomial distribution has one more parameter than the Poisson (Toe et al., 1997), the second parameter 
can be used to adjust the variance independently of the mean in a regression-based predictive risk model. 
Furthermore, since in probability theory and statistics, the negative binomial distribution is a discrete probability 
distribution of the number of successes in a sequence of Bernoulli trials before a specified non-random number of 
failures denoted r (Boatin et al., 1997), the pmf   of the negative binomial distribution with a non-homogenous 
gamma distributed mean can be subsequently expressed as

[see 2]. In this linear based equation, the quantity in 
parentheses would be the binomial coefficient, and hence would then be equivalent  to

This quantity can alternatively be written as 

for explaining “negative binomialness’ in a 
linearly dependent spatiotemporal geopredictive onchocerciasis-related regression –based linear ArcGIS/SAS-
based risk model. In ecological-based empirical analysis related to the spatiotemporal predictive arthropod-borne 
infectious disease regression-based risk mapping data, the sampled explanatory covariate coefficients usually 
exhibit overdispersion which justifies the use of a negative binomial regression with a non-homogenous gamma 
distributed mean [see 10].  

 In this research we proposed the use of a Poisson- gamma model for relative risks based on ArcGIS/SAS-
based -based Euclidean distances from an S. damnosum s.l. epidemiological capture point using an empirical 
Bayesian approach. This model was generalized into a fully Bayesian paradigm using a hierarchical generalized 
probabilistic regression –based framework. Our assumption was that inferences from hierarchical generalized 
Bayesian probabilistic estimation matrices could generate unbiased seasonally-dependent geopredictive 
onchocerciasis. -related linear risk mapping variables for spatially targeting endemic transmission areas. In these 
model the conjugate prior for the rate parameter λ of the Poisson distribution was the gamma distribution. 

Additionally, in these model  if  denoted whether λ was distributed according to the gamma 
density, g  which was parameterized in terms of a shape parameter α and an inverse scale parameter β employing 

. Then, given the same sample of n independent S. damnosum s.l. riverine 
larval habitat spatiotemporally measured explanatory covariate coefficients values ki and a prior of Gamma(α, β), 

the posterior distribution was quantitatively assessed using . Our assumption 
was that by constructing such a model, the posterior mean E*λ+ would approach the maximum likelihood estimate 

(i.e., ) and the limit in the residual parameters which would then be expressed as   . The 
posterior predictive distribution for a single additional observation\ employed in predictive spatiotemporal 
regression-based risk map can detect spatial outliers using a binomial distribution (i.e., a Gamma-Poisson 
distribution) (Toe et al., 1997). Thereafter, general categories of space–time autoregressive models, [e.g., 
autoregressive-integrated-moving-average models (ARIMA), eigenvector mapping, 3-dimensional geostatistical 
models] were constructed in. SAS for forecasting endemic transmission-oriented unbiased estimators and 
quantitating uncertainty-based residual explanatory covariate coefficients. Our assumption was that by regressing 
specific geographical locational covariates (e.g., Euclidean distance from a georeferenced riverine- village 
community to a capture point) endemicity as determined by spatial aggregation of prolific seasonal habitats could 
be   targeted efficiently in a stochastically interpolated autoregressive risk map.  

 In order to compute robust eigenvectors from the spatiotemporal-sampled S.damnosum s.l. observational 
explanatory covariate coefficients, in this research, we also employed an eigenfunction decomposition algorithm 
based on geographic connectivity matrices. Geographic Connectivity/Weights Matrix are spatially represented by 
an n-by-n matrix with the same sequence of row and column location labels, whose entries can indicate which 
pairs of sampled data pairs are neighbors (Toe et al., 1997). By so doing, we were able to generate a Moran’s 
Coefficient (MC). The MC is an index of spatial autocorrelation, involving the computation of cross-products of 
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mean adjusted values that are geographic neighbors (i.e., covariations), that ranges from roughly (–1, –0.5) to 
nearly 0 for negative, and nearly 0 to approximately 1 for positive, spatial autocorrelation, with an expected value 
of –1/(n – 1) for zero spatial autocorrelation, where n denotes the number of areal units. The ‘MC’ was then 
employed as a covariation index (i.e., pairwise products of the spatiotemporal-sampled geopredictive 
onchocerciasis endemic transmission-oriented regression coefficients deviations from the mean). The sampling 
distribution was constructed in SAS/ArcGIS using a stratified randomly sampled riverine–based time encompassing 
regression-based framework. A probability distribution was then rendered from  regressing the observed endemic 
transmission-oriented explanatory covariate coefficients. Thereafter, by constructing all possible permutations of 
the spatiotemporal-sampled count values a riverine –based surface partitioned map was generated. Thereafter, 
we attempted to describe the residual autocorrelation error coefficients in the spatiotemporal-dependent 
empirical S. damnosum s.l. –oriented empirical datasets employing terms of the calculated product moment 
correlation coefficient and their spatially associated neighboring  time series sampled village parameter estimators 
(prevalence rates)  (i.e., y ) replacing the value of the predictor variable x in the autoregressive matrix.  

 

In the seasonal S. damnosum s.l. –oriented spatial autoregressive matrix we employed the expression  
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. In this research 
the left-hand expression converted to the right side in the equation, by substituting the numerator term but only 
when a 1 appeared in the estimation matrix. We were then able to compute the numerator cross-product terms 
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(McCulloch and Searle, 2005). Therefore, in this 
research, the right hand expression of the geopredictive autoregressive S.damnosum s.l. risk model was the MC 
derived from the spatiotemporal sampled explanatory covariates. 

A second measure of spatial autocorrelation, used in this research, was Geary’s Ratio which was a paired 
comparison similarity index for spatially calculating neighboring sampled count values, based upon the unbiased 
sample variance (i.e., division by n-1 rather than n), which was expressed  in this research in terms of the  MC as : 
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. Geary Ratio, an index of spatial autocorrelation, involving 
the computation of squared differences of values were geographic neighbors (i.e., paired comparisons of 
spatiotemporal–sampled  S.damnosum s.l. observations ), that ranged from 0 to 1 for negative, and 1 to 
approximately 2 for positive, spatial autocorrelation, with an expected value of 1 for zero spatial autocorrelation. 
The expected value in the spatiotemporal predictive autoregressive model then became
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standard error to be computed as 
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 under the assumption of normality within a  
geographically weighted regression(GWR). Geographically weighted regression (GWR) can identify surface 
heterogeneities in predictive risk models by quantifying the spatial variability of the estimated local regression 
coefficients (McCulloch and Searle, 2005). In most cases these attributes in a predictive spatiotemporal 
autoregressive model exhibits local deviations from a global regression model. 

We used spatiotemporal-sampled data obtained from the African Programme for Onchocerciasis Control 
(APOC, 1974–2002) for remotely constructing our seasonally-based geopredictive onchocerciasis risk -oriented 
endemic transmission oriented model. Large-scale control of Onchocerciasis commenced over three decades ago, 
initially through the Onchocerciasis Control Programme in West Africa (OCP, 1974–2002), and more recently by the 
African Programme for Onchocerciasis Control (APOC, 1995–2010). The goals of OCP were to eliminate 
onchocerciasis as a public health problem and to mitigate its negative impact on the social and economic 
development of affected regions. The strategic objective of APOC is to permanently protect the remaining 120 
million people at risk of this debilitating and disfiguring disease in 19 countries in Africa through the establishment 
of community-directed treatment with ivermectin (CDTI) that is capable of being sustained by the communities 
after APOC financing has ended. As such , another of our assumptions was we could generate cost-effective 
regiments of treatment within the riverine-based  communities by remotely quantifying endemic transmission 
zones based on the time-series dependent empirical ecological datasets, their georeferenced data feature 
attributes and their Euclidean-distance based covariate coefficient values. Therefore, the objectives of this 
research were to: (1) generate a backward Poisson stepwise regression model using multiple field and remote  
georeferenced seasonal-sampled predictor variables; (2) filter all latent autocorrelation error coefficients in the 
variance estimates using an eigenfunction spatial filter decomposition algorithm; and, 3) construct a hierarchical 
linear random effects model to forecast prevalence rates and eliminate uncertainty estimates (e.g., perfect 
multicolinearity) in multiple empirical ecological datasets of S.damnosum s.l.–related  explanatory covariate 
coefficients spatiotemporally sampled from 2009 to 2012 in a riverine ecosystem in Burkina Faso. 

2. Materials and methods 

2.1. Study site 

Burkina Faso is a landlocked country in West Africa It is surrounded by six countries: Mali to the north, Niger 
to the east, Benin to the southeast, Togo and Ghana to the south, and Côte d'Ivoire to the southwest. Its size is 
274,200 km2 (105,900 sq. mi.) with an estimated population of more than 15,757,000. Water covers 
approximately 400 km² of the country.  Burkina Faso has three distinct seasons: warm and dry (November–March), 
hot and dry (March–May), and hot and wet (June–October). Annual rainfall varies from about 250 mm to 
1,000 mm . The terrain is mostly flat with undulating plains and hills. The study site was in the western part of the 
Burkina Faso within a riverine ecosystem called Chutes-Dienkoa village. 

2.2. Remote sensing data 

Raster image data from the DigitalGlobe QuickBird satellite service were acquired for the riverine study site 
for the periods of: 15 October 2009, 11 February 2010, 13  October 2010, 15 February  2011, 1 October 2011,  17 
February  2012, 15  October 2012. The Order Polygon contained 5 vertices consisting of longitude/ latitude 
(decimal degrees) geographic coordinates using a WGS-84 ellipsoid. The satellite data contained 64 km2 of the 
land cover in the study site. The QuickBird imagery was classified using the Iterative Self-Organizing Data Analysis 
Technique (ISODATA) unsupervised routine in ERDAS Imagine v.8.7™ (ERDAS, Inc., Atlanta, Georgia). Unsupervised 
classifications are commonly used for the identification of sub-meter resolution-derived LULC classes associated 
with prolific vector arthropod-related immature habitats based on spatiotemporal-field-sampled count data [14]. 
QuickBird collected the data used an 11-bit dynamic range. This allowed 211or 2,048 possible intensity values for 
each pixel. Because computers cannot read 11-bit data, we compressed the QuickBird 11-bit data into 8-bit data. 
As such, QuickBird data spanning 2,048 pixel values was rescaled to 256 values. The QuickBird image data were 

http://en.wikipedia.org/wiki/Mali
http://en.wikipedia.org/wiki/Niger
http://en.wikipedia.org/wiki/Benin
http://en.wikipedia.org/wiki/Togo
http://en.wikipedia.org/wiki/Ghana
http://en.wikipedia.org/wiki/C%C3%B4te_d%27Ivoire
http://en.wikipedia.org/wiki/Season
http://en.wikipedia.org/wiki/Rainfall


B.G. Jacob et al. / Scientific Journal of Pure and Applied Sciences (2013) 2(12) 401-460 

  

415 

 

  

delivered as pan-sharpened composite products in infra-red (IR) colors. The clearest, cloud-free images available of 
the contiguous sub-areas of the riverine study site were used to identify LULC covariates and other spatial data 
feature attributes associated with the georeferenced S.damnosum s.l. habitat breeding capture point. 

A base map of the riverine study site was then generated in ArcGIS using the QuickBird visible and near (IR) 
data using differentially corrected global positioning systems (DGPS) ground coordinates of the spatiotemporal- 
sampled S. damnosum s.l. habitat breeding capture point and the surrounding georeferenced villages. The DGPS 
were acquired from a CSI max receiver which has a positional accuracy of +/- .178. Using a local DGPS broadcaster 
can compensate for ionospheric and ephemeris effects which can improve horizontal accuracy significantly and 
can bring altitude error down in a predictive vector arthropod-related larval habitat model (Gosper et al., 1972). 
Each georeferenced S. damnosum s.l. habitat was then entered into the VCMS™ relational database software 
product (Clarke Mosquito Control Products, Roselle, IL). The VCMS™ database supported a mobile field data 
acquisition component module, called Mobile VCMS™ that synchronized the field sampled data from industry 
standardized Microsoft Windows Mobile™ devices  while supporting  add-on DGPS data collection By so doing 
multiple spatiotemporal base maps were generated for the study site.(Figure 2). 

 

 

Fig. 1. Base map of  the Chutes Dienkoa study site capture point and  surrounding  epidemiological villages as 
entered into the VCMS repository database. 

2.3. Environmental parameters 

Multiple georeferenced explanatory covariates were then examined extensively using: longitude, latitude, 
and altitude data (see Table 1). The criteria involved the centrographic measures of spatial mean and distance 
between the riverine-based villages and the georeferenced larval habitat distance from the sampled site to the 
breeding capture point. The data was also comprised of individual spatiotemporal-sampled observations of 

file:///E:/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/9DKUTEGZ/altitude%20error%20down%20to%203-10m
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S.damnsoum s.l. habitat capture point together with a battery of categorical attribute measures which were 
expanded into multiple  coefficient estimate. 

In this research, the riverine -village’s distances were measured as Euclidean distances using ArcGIS 
projection units of the raster which also computed the digitized grid cell matrix. The Euclidean distance output 
raster contained the measured distances. The Euclidean Distance functions provided information according to 
Euclidean or, straight-line, distance between the georeferenced villages and from the remotely-sampled riverine 
capture point to the villages (i.e., geometric distances in the multidimensional space). In this research the 

Euclidean distances were computed as: distance(x,y) = { i (xi - yi)2 }½. Every cell in the Euclidean allocation 
output raster was the then assigned the value of the source to which it was closest. The nearest source was then 
determined by the Euclidean Distance function in ArcGIS. This function assigned space between the georeferenced 
S. damnosum s.l. riverine habitat capture point and the villages with their stratified prevalence rates. The 
Euclidean direction output raster contained the azimuth direction from each digitized grid cell centroid to the 
nearest source. The Euclidean Allocation function identified the nearest human habitation center closest to each 
grid cell. The distance between sampled and human habitation areas were then categorized into numerous classes 
(e.g., 1: 0–5 km, 2: 5–10 km and 10-15km) 
 

Table 1 
Environmental predictor variables sampled at the epidemiological capture point. 

Variable Description Units 

GCP Ground control points Decimal-degrees 
FlOW flowing water Presence or absence 
HGHT Height of water  
TURB Turbidity of water Formazin Turbidity Unit 
AQVEG Aquatic vegetation Percentage 
HGVEG Hanging vegetation Percentage 
DDVEG Dead vegetation Perecentage 

RCKS Rocks Perecentage 
MMB Man-made barriers Type (e.g.,damns, bridges) 

DISHAB Distance  between epidemiological 
villages 

meters 

DISCAP Distance  between capture point 
and epidemiological villages 

meters 
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Fig. 4. An Euclidean-distance-based matrix overlaid onto the georeferenced spatiotemporal-sampled S. damnosum 
s.l. riverine habitat capture point 

2.4. Regression Model 

We then constructed a Poisson model in SAS GEN MOD. The Poisson process  in our analyses was provided by 
the limit of a binomial distribution based on the spatiotemporal-sampled covariate coefficient estimates using 

(2.1). We viewed the distribution as a function of the expected number of  
time series-dependent larval count predictor  variables  using the sample size N for quantifying the fixed p  in 
equation (2.1), which then was then transformed into  the linear equation:

Based on the sample size N, the distribution approached   which in 

this research was expressed by  = = =

= =  
The GENMOD procedure then fit a generalized linear model (GLM) to the sampled data by  MLE of the 

parameter vector β. In this research the GENMOD procedure estimated the parameters of the S. damnosum 
s.l.regression-based risk model numerically through an iterative fitting process. The dispersion parameter was then 
estimated by the residual deviance and by Pearson’s chi-square divided by the degrees of freedom (d.f.). 
Covariances, standard errors, and p-values were then computed for the estimated covariate coefficients based on 
the asymptotic normality of the model residuals derived from the MLE . 

 Interestingly, our model revealed that the sample size N completely dropped out of the probability 
function, which in this research had the same functional form for all the spatiotemporal-sampled parameter 

estimator measurement values (i.e., ). As expected, the Poisson distribution was normalized so that the sum of 

http://mathworld.wolfram.com/PoissonProcess.html
http://mathworld.wolfram.com/BinomialDistribution.html
http://mathworld.wolfram.com/SampleSize.html
http://mathworld.wolfram.com/PoissonDistribution.html#eqn2
http://mathworld.wolfram.com/SampleSize.html
http://mathworld.wolfram.com/SampleSize.html
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probabilities equaled 1. The ratio of probabilities was then which in this 

research was provided by .The Poisson distribution then revealed that the 

covariate coefficients reached a maximum when where  was the Euler-

Mascheroni constant and  was a harmonic number, leading to the transcendental equation . 

The linear model also revealed that the Euler-Mascheroni constant arose in the integrals as = =

= = (2 .2). The Euler–Mascheroni constant is 
a mathematical constant recurring in analysis and number theory, usually denoted by γ (Toe et al., 1997).  

Commonly, integrals that render  in combination with temporal constants include =

 and = (Boatin et al., 1997). 
 Thereafter, the double integrals in the spatiotemporal S. damnosum s.l. regression model included

.  An interesting analog of equation (2.2) in our seasonal predictive regression 

risk model was then provided by = = =

. This solution was also provided by incorporating Mertens theorem [i.e., ] 
where the product was aggregated over the spatiotemporal-sampled S. damnosum s.l-related values found in the 

ecological empirical datasets. The  Mertens' 3rd theorem,   is related to the density of 
prime numbers where γ is the Euler–Mascheroni constant(Boatin et al., 1997).By taking the logarithm of both sides 

in the regression risk-based model, an explicit formula for I was then obtained using 

. This product was also given by series due to Euler, which followed from equation 

(2.2) by first replacing b , in the regression equation using and then generating 

.We then substituted the telescoping sum  for 

which then rendered .Thereafter, we obtained =

 . 

http://mathworld.wolfram.com/Euler-MascheroniConstant.html
http://mathworld.wolfram.com/Euler-MascheroniConstant.html
http://mathworld.wolfram.com/HarmonicNumber.html
http://en.wikipedia.org/wiki/Mathematical_constant
http://en.wikipedia.org/wiki/Mathematical_analysis
http://en.wikipedia.org/wiki/Number_theory
http://mathworld.wolfram.com/DoubleIntegral.html
http://mathworld.wolfram.com/MertensTheorem.html
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
http://mathworld.wolfram.com/TelescopingSum.html
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 Additionally, other series in the spatiotemporal predictive S. damnosum s.l.regression-based risk model 

included the equation (◇) where = and where  was 

and the Riemann zeta function. The Riemann zeta function ζ(s), is a function of a complex 

variables that analytically continues the sum of the infinite series



1

1

n
sn , which converges when the real part of s 

is greater than 1 where lg is the logarithm to base 2 and  is the floor function (Toe et al., 1997). Nielsen (Nielsen, 

1897) earlier gave a series equivalent to and thereafter  

 was then added  to render Vacca's formula. Gosper et 

al. (1897) used the sums = =  with  by replacing the undefined I and 
then rewrote the equation as a double series for applying the Euler's series transformation which we then 
employed to each of the sampled time-series dependent S. damnosum s.l explanatory covariate coefficient 
estimates. 

  In this research n
k
  was used as a binomial coefficient, rearranged to achieve the conditionally convergent 

series in the predictive autoregressive spatiotemporal onchocerciasis -related linear endemic transmission-
oriented model as the plus and minus terms were first grouped in pairs of the sampled covariate coefficient 
estimates employing the resulting series of the actual sampled measurement indicator values. The double series 

was thereby equivalent to Catalan's integral:  Catalan's integrals are a special case of 

general formulas due to  where is a Bessel function of the first 

kind(Boatin et al., 1997). The Bessel function is a function defined in a robust regression model by employing 

the recurrence relations and (Toe et al., 1997) which Jacob et al. [15] 
recently defined as solutions in a West Nile Virus (WNV) related mosquito (i.e., Culex quinquefasciatus)   regression 

models  in a  district in Birmingham, Alabama using the differential equation . 
Thereafter, analytical approaches based on the eigenfunctions of spatial uncertainty configuration matrices were 
proposed in order to consider explicitly spatial explanatory covariates of Cx. quinquefasciatus habitat suitability. 
The products were  distance-based (DB) topological ArcGIS/SAS-based eigenvector maps based upon geographic 

connectivity matrices. Thus, helped create predictors that could be easily 
incorporated into conventional WNV mosquito regression- based risk models. The equation helped provide a 
flexible tool  ( i.e., second-order autocorrelation) that allowed the full range of general and generalized linear 
modeling theory to be applied to WNV mosquito risk modeling in the presence of nonzero spatial  autocorrelation.  

In this research the Bessel function was defined by the contour integral
where the contour enclosed the origin and was traversed in a counterclockwise direction. This function render :

http://mathworld.wolfram.com/RiemannZetaFunction.html
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Complex_variable
http://en.wikipedia.org/wiki/Complex_variable
http://en.wikipedia.org/wiki/Analytic_continuation
http://en.wikipedia.org/wiki/Infinite_series
http://en.wikipedia.org/wiki/Real_part
http://mathworld.wolfram.com/Lg.html
http://mathworld.wolfram.com/Logarithm.html
http://mathworld.wolfram.com/FloorFunction.html
http://mathworld.wolfram.com/DoubleSeries.html
http://mathworld.wolfram.com/EulersSeriesTransformation.html
http://mathworld.wolfram.com/BinomialCoefficient.html
http://mathworld.wolfram.com/Formula.html
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
http://mathworld.wolfram.com/RecurrenceRelation.html
http://mathworld.wolfram.com/DifferentialEquation.html
http://mathworld.wolfram.com/ContourIntegral.html
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 Thereafter, to quantify the equivalence in the 
spatiotemporal ecological empirical dataset of the S. damnosum s.l.regression-based risk-oriented parameter 

estimators, we expanded into a geometric series and multiplied the sampled data attribute features by 

, and integrated the term wise as in Sondow and Zudilin (de la Vallée Poussin, 1989). Other series for  then 

included  and .A rapidly 

converging limit for  was then provided by = =

 where  was a Bernoulli number. Another limit formula was then 

provided by the equation . Limits to the spatiotemporal-sampled S. 

damnosums.l. riverine habitat regression-based  risk model was then rendered by 

where was the Riemann zeta function.  
 

Another connection with the primes was provided by for the spatiotemporal -sampled 

explanatory covariate coefficient numerical values from 1 to I in the ecological empirical dataset which in this 

research was found to be asymptotic to . De laValléePoussin (Griffith, 1897) proved 

that if a large number n is divided by all primes , then the average amount by which the quotient is less than 

the next whole number is . An elegant identity for  in our seasonal predictive S. damnosum s.l. regression-based 

risk model was then provided by   where was a modified Bessel function of the 

first kind, was a modified Bessel function of the second kind, and where  was a 

harmonic number. This provided an efficient iterative algorithm for  by computing = , =

, =  and = with and .  

Reformulating this identity rendered the limit .Infinite products involving also 
arose from the Barnes G-function using the positive integer n. In mathematics, the Barnes G-functionG(z) is a 
function that is an extension of superfactorials to the complex numbers which is related to the Gamma function 

(Toe et al., 1997). In this research, this function provided = and =

. As such, the Barnes G-function was linearly defined in our time-series dependent S. damnosum s.l. 
regression-based risk model. The model  was defined by

http://mathworld.wolfram.com/GeometricSeries.html
http://mathworld.wolfram.com/BernoulliNumber.html
http://mathworld.wolfram.com/RiemannZetaFunction.html
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http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html
http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html
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http://mathworld.wolfram.com/InfiniteProduct.html
http://mathworld.wolfram.com/BarnesG-Function.html
http://mathworld.wolfram.com/PositiveInteger.html
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where γ was the Euler–Mascheroni constant, 

exp(x) = ex, and ∏ was capital pi notation. The Euler-Mascheroni constant was then rendered by the expressions 

=  =  where  was the digamma function   and the asymmetric limit form 

of and . In mathematics, the digamma function is defined as the 

logarithmic derivative of the gamma function:  where it is commonly the first of 
the polygamma functions. The digamma function,  in this research was denoted as ψ0(x), which was then related 

to the harmonic numbers in that  where Hn is the nth harmonic number, and γ was  the Euler-

Mascheroni constant. The difference between the nth convergent in equation (◇) and  in our spatiotemporal-
sampled predictive S. damnosums.l. regression-based risk model was then rendered by 

 where was the floor function which satisfied the inequality

.The symbol  was then  . This led to the radical 
representation of the spatiotemporal-sampled explanatory observational covariate coefficients as

which in this research was related to the double series

and a binomial coefficient. Thereafter, another proof of product in the 
seasonal predictive S.damnosums.l.regression risk model was then provided by the equation 

….The solution was then made even clearer by changing . In 

this research, both these regression-based risk-based formulas were also analogous to the product for  which 

then rendered: … 
In this research, the Touchard polynomials (i.e., S. damnosum s.l. exponential polynomials), comprised 

a polynomial sequence of  a binomial type  as defined by the equation

where S(n, k) was a Stirling number of the second kind, 
(i.e., the number of partitions of the empirical  ecological-sampled dataset based on the size n into k disjoint non-
empty subsets.) The value at 1 of the nth Touchard polynomial in this research was the nth Bell number,( i.e., the 

number of partitions of the sampled larval habitat dataset based on size n:  ) If X is a random 
variable with a Poisson distribution with expected value λ, then its nth moment is E(Xn) = Tn(λ), leading to the 

definition:  (Jacob, et., 2012). By so doing, we were able to quickly prove that 
this polynomial sequence in the predictive regression  based equation  was of  abinomial type, [i.e., it satisfied the 

sequence of identities:( )]. In this research, the Touchard polynomials made up the 
only polynomial sequence of binomial type in which the coefficient of the 1st-degree term of every polynomial was 

1 [i.e., ]. We also noticed that the Touchard polynomials satisfied the the Rodrigues-like 
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formula[i.e., ]. Furthermore, the Touchard polynomials satisfied the recursion

and in the geopredictive seasonal S.damnosum s.l. 
riverine regression-based risk model. Using the Umbral notation Tn(x)=Tn(x),these formulas become:

 and  The generating function of the Touchard 

polynomials  was then  and a contour-integral representation was 

. The Touchard polynomials (and thereby the Bell numbers) was then generalized, 
using the real part of the above integral, to non-integer order: thus,

. 

 

2.5. Negative binomial regression 

Unfortunately, extra-Poisson variation was detected in the variance estimates in our model. A modification of 
the iterated re-weighted least square scheme and/or a negative binomial non-homogenous regression-based 
framework conveniently accommodates extra-Poisson variation when constructing seasonal log-linear models 
employing frequencies or prevalence rates as dependent/response variables (Toe et al., 1997). Operationally these 
models consists of making iterated weighted least square fit to approximately normally distributed time series-
dependent explanatory predictor covariate coefficients based on observed prevalence rates or their logarithm. 
Unfortunately, the variances of the S.damnosum s.l. regression-related observations in the log-linear equations 
were assumed to be constant. Subsequently, we introduced an extra-binomial variation scheme into the linear-
logistic model which was fitted by a Poisson procedure. 

 
We then constructed a robust negative binomial regression model in SAS with non-homogenous means and a 

gamma distribution by incorporating ( ) in equation (2.1) .The distribution in the linear regression was 

then rewritten  for quantifying the spatiotemporal-sampled  
S. damnosum s.l. parameter estimators. The negative binomial distribution was thus derived as a gamma mixture 

of Poisson-derived random variables. The conditional mean in the model was then and 

the variance was.  
To further estimate the S. damnosum s.l. regression based risk model, we specified DIST=NEGBIN (p=1) in the 

MODEL statement in PROC REG. The negative binomial model NEGBIN1 was setp=1 , which revealed the variance 

function  which was found to be linear in the mean of the  risk model. The log-likelihood 
function of the NEGBIN1 regression model was then provided by the following equation =

 where .The gradient for 

the model was then expressed as  and

. 

In this research, the negative binomial regression model with variance function , was 
referred to as the NEGBIN2 model. To estimate this model, we specified DIST=NEGBIN (p=2) in the  model 

statements. A test of the Poisson distribution was then performed by examining the hypothesis that . A 
Wald test of this hypothesis was also provided which were the reported t statistics for the estimates in the 
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negative binomial S. damnosum s.l. geopredictive regression model. The log-likelihood function of the regression 

model (i.e., NEGBIN2) was then generated by the equation = =

 where   was an integer when the gradient was

. The variance in the S. damnosum s.l. model was then assessed by:

. 
2.5 Autocorrelation model: A spatial autoregressive model was then generated that used a variable Y, as a 

function of nearby sampled S..damnosums.l.-related  geopredictive  covariate coefficients at the riverine study 
site. In this research, Y had an indicator value 1 (i.e., an autoregressive response) and/or the residuals of Y which 
were values of nearby sampled Y residuals (i.e., an SAR or spatial error specification). For the time series-
dependent -related parameter estimators, the SAR model furnishes an alternative specification that frequently is 
written in terms of matrix W (Boatin et al., 1997). A misspecification perspective was then used for performing a 
spatial autocorrelation error estimation analysis using the seasonal-sampled predictor covariate coefficients. The 
model was generated using they = Xβ + ε∗  (i.e. regression equation) assuming the sampled S.damnosum s.l data 
had autocorrelated disturbances. The model also assumed that the sampled data could be decomposed into a 

white-noise component, , and a set of unspecified sub-district level regression models that had the structure

*





 EXBy

. White noise in a seasonal -based regression model is a univariate or multivariate discrete-
time stochastic process whose terms are independent and independent (i.i.d) with a zero mean (Jacob, et., 2012). 
In this research, the misspecification term wasEY. 

 
Distance between the S.damnosum s.l.-related parameter estimators was then defined in terms of an n-by-n 

geographic weights matrix, C, whose cijvalues were 1 if the sampled geolocationsi and j  were deemed nearby, and 
0 otherwise. Adjusting this matrix by dividing each row entry by its row sum, with the row sums given by C1, 

converted this matrix to matrix W. The n-by-1 vector 
 Tnxxx 1

 contained measurements of a quantitative 
variable for n (i.e., georeferenced sampled S.damnosum s.l.geopredictor covariate µ) within the n-by-n spatial 
weighting matrix. The formulation for the Moran’s index of spatial autocorrelation used in this research was:

      

    









n

i iij

jiij

xxw

xxxxwn
xI

1

2

2

2

 where 
  

 


n

i

n

j1 1

2

with 
ji 

. The values ijw
 were the spatial weights (i.e., sampled 

S.damnosum s.l. endemic transmission-oriented covariate coefficients) stored in the symmetrical matrix W [i.e., 

 jiij ww 
 ] that had a null diagonal 

 0iiw
. The matrix was initially generalized to an asymmetrical matrix W. 

Matrix W can be generalized by a non-symmetric matrix 
*W  by using   2** TWWW   (McCulloch and 

Searle, 2005). Moran’s I was then rewritten using matrix notation: 
 

Hxx

HWHxx

W

n

HHxx

HHWHHxx

W

n
xI

T

T

TT

T

t 1111


 where 

 nIH T11  was an orthogonal projector verifying that 
2HH  (i.e., H  was independent). The spatial error 

model in the disturbance was then revealed in the seasonal predictive S.damnosum s.l. model residuals using an 
alternate form of the model: y= X βW+ (1-λW2)-1. The concentrated log-likelihood equation then estimated  λ  
which in this research was obtained by substituting the GLS estimators of β and ς2as functions of λ into the 
likelihood equation of the spatial error model. The likelihood equation used the simplification for the Jacobian 
term.  

 In this research the Jacobian was the derivative of a multivariate function. In vector calculus, the Jacobian 
matrix is the matrix of all first-order partial derivatives of a vector- or scalar-valued function with respect to 
another vector; therefore, if F : Rn → Rm is a function from Euclidean n-space to Euclidean m-space. In this 
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research this function was given by m real-valued component functions, y1(x1,...,xn), ..., ym(x1,...,xn). The partial 
derivatives of all these functions were organized in an m-by-n matrix, (i.e., the Jacobian matrix J of F in the 

S.damnosum s.l. model), as follows: The matrices were also  denoted by 

and . Since  (x1,...,xn) were the usual orthogonal Cartesian coordinates, the ith row (i = 1, ..., n) of 

these matrices corresponded to the gradient of the ith component function yi:  .The model described by the  
JF(p) was the best linear approximation of F near the point p (i.e., sampled S. damnosum s.l ArcGIS/SAS-based 

Euclidean-distant-based parameter estimators) in the sense that for x 

close to p and where o was the little o-notation for  and  was the distance between x and p. If p is 
a point in Rn and F is differentiable at p, then its derivative is given by JF(p) (McCulloch and Searle, 2005). The 
transformation from spherical coordinates (r, θ, φ) to Cartesian coordinates (x1, x2, x3) was then provided by the 

function F : R+ × *0,π+ × *0,2π) → R3 with components: 

 The matrix for this change was then 

 The determinant was r2 sin θ. Since dV = 
dx1dx2dx3 in the predictive seasonal autoregressive model, this determinant implied that the differential volume 
element dV = r2 sin θdrdθd. Nevertheless, this determinant varied the sampled coordinates. To avoid any variation 

the new coordinates were defined as  in the model. Thereafter, the determinant 

equaled to 1 and volume element became  . In this research, the Jacobian 
term appeared in the likelihood functions as a normalizing factor. This ensured that the use of our variable 
transformations still led to probability density functions whose complete integration yielded unity. In probability 
theory, a normalizing constant is a constant by which an everywhere non-negative function must be multiplied so 
the area under its graph is 1 to make it a probability density function(pdf) (Griffith, 1897).  We then defined this 

function as . This rendered the values had

.Thereafter, we defined the   function as

in the S.damnosum s.l. model so that

 Function is a pdf(Griffith, 1897). This was the density of the 
standard normal distribution using the means expected value as  0 and the variance as 1. In this research the 

constant  was the normalizing constant of function p(x). In the models. Similarly,  and 

consequently    was a probability mass function on the set of all nonnegative integers in the 
sampled  ecological empirical dataset. 

A Moans scatterplot was then generated in ArcGIS. The Moran scatterplot portrays Pn j¼1 cij zj versus zi, 
whose trend line highlights the global trend across a given geographic landscape employing sums of neighboring 
values’ quantities which can be visualized with a map(McCulloch and Searle, 2005). By doing so we generated  local 
indices of spatial autocorrelation (LISA) statistics, which enabled clusterings on the S. damnosum s.l.  map to 
become more conspicuous. LISA quantities highlight local trends across a given geographic landscape, emphasizing 
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any clusterings in the deviations from the global trend line (Jacob, et., 2012).These individual contributions to the 
MC revealed whether spatial autocorrelation essentially was the same in all demarcated zones in our study site 
map. 

 
Bayesian analyses: In the Bayes formulation, the specification of the seasonal S. damnosums.l. risk model was 

performed by assigning priors to all unknown parameters. We used the empirical dataset of spatiotemporal-
sampled observations X=*x1…,xn+; whereby, each xifor  i=1…n  was assumed to be distributed according to some 
distribution p(xi | θ). The posterior probability Pr(M|D) of the models(i.e.,M ) was given by the sampled data 

feature attributes  (i.e., D) which  was given by Bayes' theorem:  Given a 
model selection problem in which we have to choose between models, on the basis of observed data D, the 
plausibility of the different models M1 and M2, parameterized by  the parameter vectors θ1 and θ2is   assessed by 

the Bayes factorK commonly provided by  where Pr(D|Mi) 
is commonly called the marginal likelihood(i.e.,i. ) [] 

 In this research θ was a parameter that was unknown and thus had to be inferred from the sampled 
georeferenced data. Our Bayesian procedure began by assuming that θ was distributed according to some prior 
distribution p(θ | α), where the parameter α was a hyperparameter. The joint probability of the was then 

generated using: , whereby, the equations   and 

 were conditionally independent of the hyperparameter. We assumed that the two 
quantities were related by their conditional probability. This conditional probability (i.e., likelihood function) was 

dependent on the modality in the model. The conditional probability of an event A   assuming that B has 

occurred, denotes , which is equivalent to [] which in this research was proven 

directly employing   as generalized by  

 
The estimate was then computed as a function of the posterior density which required the specification of a 

prior density in addition to the likelihood function Bayesian inference which then determined the posterior 

distribution of the sampled time series dependent S.damnosums.l.parameter estimators    using : 

 
            In this research we defined the deviance as , where  was  the  sampled  

onchocerciasis endemic transmission-oriented explanatory covariate coefficients,  was the likelihood 

function and  C was a constant. The expectation  actually  measured how well the model fit the 
sampled data. The residual revealed that the larger the expectation value, the worse the fit. The effective number 

of parameter estimators for the risk model was then computed as , where  was the expectation 

of . In this research the DIC was calculated in  the model as  
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We then used PROC MCMC for generating the multivariate density functions in the Bayesian autoregressive 
estimation analysis. In PROC MCMC we used the logarithm of LOGMPDFWISHART for determining the Wishart 
distribution and the logarithm LOGMPDFIWISHART for the inverted-Wishart distribution. We let x be an n- 
dimensional random vector with mean vector  and covariance matrix .. The density was

 where  was the determinant of the covariance matrix .  The 
density function from the Wishart distribution in the model  was then  : 

with , and the trace of the square 

matrices  was:   . Additionally, the density 

function from the inverse-Wishart distribution was for , 

and  for model.  
 The marginal and conditional distributions from the inverse Wishart-distributed matrix was then further 

quantified using A~W−1(ψ, m). We partitioned the matrices for determining if  ψ was conformable with each 

other using: A =  
A11 A12

A21 A22
 , ψ =  

ψ11 ψ12

ψ21 ψ22

  where Aij and ψij were pi x pj  matrices. We then determined if A11 

was independent of A11
−1A12 and A22∙1, when A22∙1 = A22 − A21A11

−1A12 which in this research was the Schur 

complementA11in;ii)A11~W−1(ψ11, m − p2);iii)A11
−1A12|A22∙1~MNp1xp2

(ψ11
−1ψ12, A22∙1 ⊗ ψ11

−1)when of MNpxq(∙,∙) was 

a matrix normal distribution rendered from the spatiotemporal-sampled S.damnosums.l.parameters and, 

A22∙1~W−1(ψ11, m).In linear algebra and the theory of matrices, the Schur complement of a matrix block (i.e., a 

sub-matrix within a larger matrix) commonly is  defined using pop, pique, pop and q×qmatrices,whereD is 

invertible and  so that M is a (p+q)×(p+q) matrix (Griffith, 1897). 
In this research, the sampled S.damnosum s.l. observations X = x1, … , xn were independent p-variate 

Gaussian variables drawn from a distribution, then the conditional distribution  had a W−1(A + ψ, n + m) 
distribution, where  A =XXT was n times the sample covariance matrix. Because the prior and posterior 
distributions are the same family(Griffith, 1897)., the inverse Wishart distribution was the conjugate to the 
multivariate Gaussian generated from the sampled georeferenced predictor covariate coefficient estimates.  

Model data input was also conducted in PROC MCMC but the number of chains had to be specified before 
compilation. A Markov chain was generated using  a sequence of sX1, X2, X3, ... with the Markov property, namely 
that, given the present state, the future and past states  were independent. Both the model residual estimates  

revealed  In this research the probability of 

going from state i to state j in n time steps was  and the single-step transition was 

 For quantifying the external values in the Markov chains we used 

and The n-step transition probabilities satisfied  

the Chapman–Kolmogorov equation, that for any k such that 0 < k < n,  When the stochastic 
process under consideration is Markovian, the Chapman–Kolmogorov equation is equivalent to an identity on 
transition densities (Jacob, et., 2012). In our Markov models we assumed that i1 < ... < in. Then, because of the 

Markov property our model rendered, where 

the conditional probability  was the transition probability between the times i>j. A stochastic process 
has the Markov property if the conditional probability distribution of future states of the process depends only 
upon the present state, not on the sequence of events that preceded it (Jacob, et., 2012). 

             In this research the Chapman–Kolmogorov equation took the form

 where S was the state space of the Markov chain in the 
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S.damnosums.l.risk model. In mathematics, specifically in probability theory and in particular the theory of 
Markovian stochastic processes, the Chapman–Kolmogorov equation is an identity relating the joint probability 
distributions of different sets of coordinates on a stochastic process (Griffith, 1897). We used { fi } as an indexed 

collection of the  sampled random variables, that was, a stochastic process. We let  be the 
joint pdf of the values of the  random variables f1 to fn. Then, the Chapman–Kolmogorov equation generated by 

the sampled random variables was  using 
a straightforward marginalization over the nuisance variables. Note that we did not assume anything about the 
temporal or any other ordering of the seasonal-sampled environmental S. damnosum s.l. variables in  the 
equation,  thus, the estimates were applied equally to the marginalization of any  parameter. When the stochastic 
process under consideration was Markovian, the Chapman–Kolmogorov equation was equivalent to an identity on 
transition densities in the model. In the Markov chain setting, one assumed that i1 < ... < in. Then, because of the 

Markov property,  the 

conditional probability  was the transition probability between the times i>j in the model.  The 
Chapman–Kolmogorov equation generated using the seasonal-sampled S. damnosums.l. data feature attributes 

then took  the form  Our model revealed that 
when the probability distribution on the state space of a Markov chain was discrete and the Markov chain was 
homogeneous, the Chapman–Kolmogorov equations could be expressed in terms of infinite-dimensional matrix 

multiplication, thus:  when P(t) was the transition matrix of jump t, (i.e., P(t) was the 
matrix such that entry (i,j) contained the probability of the chain moving from state i to state j in t steps).  
Additionally, it followed that to calculate the transition matrices of jump t, it was sufficient to raise the transition 

matrix of jump one to the power of t, that is in the seasonal endemic transmission risk model.  The 
marginal distribution Pr(Xn = x) was the distribution over states at time n in the residuals.  The initial distribution 
was Pr(X0 = x) in the predictive model. The evolution of the process through each step was then described by

 
Furthermore, in this research we extended this analyses to show that that distance between the nth step 

transition probability and the invariant probability measure  in the time-series dependent S.damnosum s.l. model  
was bounded by p*[a+bg(x)] for the constant a>b>0 and p<1. The invariant was then used to obtain convergence 
rates to quantify the transition probabilities for autoregressive processes in the models using a random walk on a 
half line. In this research a random walk with reflecting zone on the nonnegative integers generated from the 

sampled predictor covariate coefficients was a Markov chain whose transition probabilities were those of 

a random walk [i.e., q(x,y)= p(y-x)] which was outside a finite set . As such, that the distribution q(x) 

stochastically dominated p(-x) for every  Jacob et. al. [11] has proven that when , the 

transition probabilities satisfy  ~  as , and when ,  ~  
in an autoregressive seasonal vector arthropod-related predictive infectious disease model. In this research we did 
so to extend and strengthen the model residuals in countable state space. Inference for MCMC simulation 
techniques was then based on weighted Least Squares Regression proposals and on latent utility representations 
of multi-categorical S. damnosum s.l. regression-based model.  

Employing the time-series S. damnosum s.l. data, a weighted autoregressive average moving model (e.g., 

ARIMA) was constructed in SAS using   where   was an integer index and the  were the sampled covariate 

coefficients. The ARMA(p,q) model was provided by: where  was the lag 

operator, the   are the parameters of the autoregressive part of the model, the  was the parameters of the 
moving average part and the   was the  error terms. In time series analysis, the lag operator or back shift 
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operator operates on an element of a time series to produce the previous element. In mathematics, and in 
particular functional analysis, the shift operator or translation operator is an operator that takes a function f(·) to 
its translation f(·+a) (Jacob, et., 2012). In time series analysis, the shift operator is called the lag operator(Griffith, 

1897). In this research, given the time series dependent observational explanatory covariates 

then  for all  or equivalently  for all where L is the lag operator. Note that the 

lag operator was raised to arbitrary integer powers so that  and  The error 
terms  were then independent, identically distributed variables sampled from a normal distribution with zero 

mean. We then assumed that the polynomial  had a unitary root of multiplicity d. The 

S.damnosums.l. risk model was then rewritten as:  An ARIMA(p,d,q) process 
then expressed this polynomial factorization property, and it was  given by:

. 

3. Results 

Initially, we constructed a Poisson regression model using the spatiotemporal-sampled S.damnosums.l 
covariate coefficient measurement values. Our model was generalized by introducing an unobserved 
heterogeneity term for each sampled observation . The weights were then assumed to differ randomly in a 
manner that was not fully accounted for by the other spatiotemporal-sampled. related covariates. In this research 

this process was formulated as  where the unobserved heterogeneity termτi = eεi   
was independent of the vector of regressors . Then the distribution of  was conditional on  which in our 
model had a Poisson specification with conditional mean and conditional variance : 

 . We then let be the pdf of . Then, the distribution  was no 

longer conditional on . Instead it was obtained by integrating with respect to :

.  
In the time series S. damnosum s.l.  regressing of the sampled covariate coefficients, the random variable K 

followed the binomial distribution with the sampled  parameters n and p where we wrote K ~ B(n, p). The 
probability of getting exactly k successes in n trials was then  rendered by the pmf which in this research was 

provided by   for k = 0, 1, 2, ..., n, where   was  
the binomial coefficient .Hence, when n chose k in there model estimation, this was  denoted C(n, k),  nCk, or nCk. 
The formula was understood as follows: k successes   were represented as (pk) (i.e. tabulated seasonal village 
prevalence rates) which was identified   employing (1 − p)n − k. In creating reference tables for our binomial 
distribution probability, we used n/2 values. This was because for k > n/2, the probability  was calculated by its 

complement as Looking at the expression ƒ(k, n, p) as a function of k in the 
onchocerciasis endemic transmission model  there was a k value that maximized it. This k value was then found by 

calculating  and comparing it to 1. There is always an integer M that satisfies

 when ƒ(k, n, p) is monotone increasing for k < M and monotone decreasing for 
k > M, with the exception of the case where (n + 1)p is an integer (Toe et al., 1997). In our case, there were  two 
seasonal-sampled S. damnosum s.l. explanatory predictor covariate coefficient values for which ƒ was maximal: 
(n + 1)p and (n + 1)p − 1. In this research, M was the most probable outcome of the Bernoulli trials (i.e.,mode).  

A generalized hypergeometric function was then generated for our 
multiseasonal S. damnosum s.l. model. In this research, a  number of generalized hypergeometric functions were 

used . For example, , a confluent hypergeometric limit function,  was implemented in Mathematica as 
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Hypergeometric0F1[b, z]. .Thereafter the confluent hypergeometric function of the first kind, was 

implemented in Mathematica  in the model as Hypergeometric1F1[a, b, z]. The function  (i.e.,"the" 
hypergeometric function or Gauss's hypergeometric function) was also implemented in the model. Thereafter, the 

Cauchy principal value was computed in Mathematica employing Integrate[f, x, a, b , PrincipalValue -> True]. 
Cauchy principal values of functions with possibly nonsimple poles can be computed numerically using the 
"CauchyPrincipalValue" method in NIntegrate(Boatin et al., 1997).  Cauchy principal values are important in the 

theory of generalized functions, where they allow extension of results to (Toe et al., 1997). 

A generalized version of the falling factorial was then defined by  for 
the S. damnsoum s.l. endemic transmission-oriented model  which was parsimoniously  implemented in 
Mathematica as FactorialPower[x, n, h]. We noticed that the usual factorial was related to the falling factorial by 

The first few falling factorials  were = , = , = = , = = ,

= =  The derivatives were then  given by  

where was the  harmonic number. A sum formula connecting the falling factorial and rising factorial in 

the model  was then achieved employing = , , = , =   where the 

generating function and where 

 In this research, the falling 

factorial was associated with  and had a  generating function = = which was   

equivalent to  The binomial identity of our predictive linear onchocerciasis endemic transmission-

oriented model was when was the  binomial coefficient, which we re-wrote 

We found that the falling factorial  in the riverine model followed  the relation 

 and  
 
The cumulative distribution function  in the S. damnosum s.l. riverine larval habitat model distribution was 

then expressed as:  where  was the "floor" under x, (i.e. the 
greatest integer less than or equal to x in the empirical dataset) . The function was represented in terms of the 

regularized incomplete beta function, as follows: =

 for each 5km delineated in the ArcGIS risk map from the capture 
point. For k ≤ np, upper bounds for the lower tail of the distribution function was then derived for each sub-

section.. In particular, Hoeffding's inequality yielded the bound  and 

Chernoff's inequality derived the bound  In probability theory, Hoeffding's 
inequality provides an upper bound on the probability that the sum of random variables deviates from its expected 
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value while, Chebyshev's inequality guarantees that in any probability distribution,"nearly all" values are close to 
the mean — the precise statement being that no more than 1/k2 of the distribution's values can be more than k 
standard deviations away from the mean or, equivalently, at least 1 - 1/k2 of the distribution's values are within k 
standard deviations of the mean (Toe et al., 1997).These bounds were reasonably tight when p = 1/2, since the 
following expression held in the riverine ArcGIS/SAS-based model for all k ≥ 3n/8 

  Thereafter, it was possible to expand any power of x + y  in the model 

into a sum of the form where 

each  was a binomial coefficient . This binomial identity used a summation notation, which in this research was 

written as The final expression in the model followed the symmetry 
of x and y. A variant of the binomial formula was also obtained for each sub-classified area by substituting 1 for y, 
so that it involves only a single sampled variable. This formula in the model was

 where  
We then investigated   generalized binomial expansions that arose  our two-dimensional S.damnsoum s.l. 

sequences for satisfying a broad generalization of the triangular recurrence for binomial coefficients. In particular, 
we generated new combinatorial formula for the  sequences in terms of a 'shift by rank' quasi-expansion based on 

an ordered set partitions. We used Dilcher's formula[i.e.,  ] for 

expressing generalized Bernoulli polynomials in terms of classical Bernoulli polynomials.  where is a binomial 

coefficient. An inverted version was then given by 

where was a harmonic number of order . A q-analog was then provided by 

where  was a q-binomial 
coefficient. 

 
 
In this research, the Hurwitz zeta function in our geopredictive obchocerciasis endemic transmission- 

oriented ArcGIS/SAS-based model  satisfied  for   where  was a Bernoulli 

polynomial, given   The Hurwitz zeta function  was then given by the functional equation 

 and by the integral 

 In our model we noted that if, and 

, then . In addition we found that  

http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Standard_deviations
http://en.wikipedia.org/wiki/Binomial_coefficient
http://en.wikipedia.org/wiki/Capital-sigma_notation
http://en.wikipedia.org/wiki/Substitution_(algebra)
http://en.wikipedia.org/wiki/Variable_(mathematics)
http://mathworld.wolfram.com/BinomialCoefficient.html
http://mathworld.wolfram.com/BinomialCoefficient.html
http://mathworld.wolfram.com/HarmonicNumber.html
http://mathworld.wolfram.com/q-Analog.html
http://mathworld.wolfram.com/q-BinomialCoefficient.html
http://mathworld.wolfram.com/q-BinomialCoefficient.html
http://mathworld.wolfram.com/BernoulliPolynomial.html
http://mathworld.wolfram.com/BernoulliPolynomial.html


B.G. Jacob et al. / Scientific Journal of Pure and Applied Sciences (2013) 2(12) 401-460 

  

431 

 

  

= = = = = in the model 

residuals. The residual derivative identities included = = =  

where  was  the gamma function The implied that in our model when  In 

the limit,  where  was  the digamma function.  

The polygamma function was then  expressed in the spatiotemporal geopredictive onchocerciasis 
endemic transmission-oriented ArcGIS/SAS-based model  in terms of the Hurwitz zeta function by 

For positive integers , , and , 

which was then subtracted from the geopredictive regression  

equation 

when was a Bernoulli number,  wasa 

Bernoulli polynomial,  was a polygamma function, and was the Riemann zeta function  which in this 

research also rendered the  following  closed-form expressions: = ,

= = =

, =

 

where means , means , and the upper and lower fractions 
on the left side of the equations correspond to the plus and minus signs, respectively, on the right side.  Further,  

on the real line with , the Riemann zeta function  in the spatiotemporal onchocerciasis endemic transmission-

oriented model  was defined by the integral  where is the gamma function. Since 

x was an integer n , then we had the identity = = = so 

 
To evaluate , we let so that and plugged in the identity  we obtained  which rendered 

= = = Integrating the 

final expression gave , which in this research canceled  the factor and provided the Riemann zeta 
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function[i.e.,   ](i.e.,a p-series). The p-series is  shorthand name for a series with the variable  taken 
to a negative exponent, (e.g., , where . -series are given in closed form by the Riemann zeta function in a S. 
damnosum s.l. transmission-oriented ArcGIS/SAS-based geopredictive model). 

In our geopredictive  onchocerciasis endemic transmission-oriented model the Riemann zeta function was 

also defined in terms of multiple integrals by  and as a Mellin transform by

for , where  was the fractional part  The integral transform  in 

the model was then defined by = , =  We noticed the transform 

existed in the model  if the integral was bounded for some , in which case the inverse 

existed  with .  Table 2 gives Mellin transforms of common functions  in the geopredictive onchocerciasis  

endemic transmission-oriented model. Here,  was  the delta function,  was  the Heaviside step function, 

was the gamma function,  was the incomplete beta function,  was  the complementary error 

function erfc, and was  the sine integral.  
 
 
 
 
 
 
 
 
 
 
Table 2 
Mellin Functions for the spatiotemporal S. damnosum s.l. riverine larval habitat model. 
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We found another example of a Mellin transform in our predictive spatiotemporal onchocerciasis endemic 

transmission-oriented ArcGIS/SAS-based model based on the relationship between the Riemann function and 

the Riemann zeta function . It appeared in the unit square integral 

 valid for . Note that the zeta function had a 

singularity at , where it reduced to the divergent harmonic series. The Riemann zeta function in our S. 
damnosum s.l. riverine larval habitat model satisfied the reflection functional equation 

 .In this research a symmetrical form of this functional equation was provided 

by  

As defined above, the zeta function with  was a complex number in this research which was 

then defined for . However, had a unique analytic continuation to the entire complex plane, 

excluding the point , which corresponded to a simple pole with a al of 1 In particular, we noticed as , 

 the residual rendered obeid  where  was the Euler-Mascheroni constant.  To perform 

the analytic continuation for , we then re-wrote = = =

which rendered  in terms of  Therefore, 

Here, the sum on the right-hand side  in the predictive spatiotemporal 

onchocerciasis endemic transmission-oriented ArcGIS/SAS-based model was exactly the Dirichlet eta function  

While this formula defined  for only the right half-plane , equation (◇) was employed to analytically 

continue it to the rest of the complex plane. In this research, analytic continuation was also performed using 

Hankel functions. These functions were defined by the contour integral  for 

, , , where  was a Hankel contour. The Riemann zeta function was then expressed in 

terms of as  for and , where was the gamma function in 
the multivariate onchocerciasis endemic transmission –oriented model distribution. 
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A globally convergent series for the Riemann zeta function then provided the analytic continuation of to 

the entire complex plane except  which was provided by 

where  was a binomial coefficient. This equation was  related to renormalization and random variates  derived 
from the regression of the seasonal-sampled onchocerciasis endemic transmission-oriented explanatory predictor 

covariate coefficients which in this research was derived by applying Euler's series transformation whereby   
to equation.   By so doing, we proved the related globally convergent series 

 can be extended to a generalization of the Riemann zeta function  

in a robust spatiotemporal onchocerciasis endemic transmission model such that  Further, if the 

singular term was excluded from the sum definition  of  in the model, then as well. Expanding 

about  then rendered   where  were Stieltjes constants.   

Expanding the Riemann zeta function about  thereafter rendered  

where the constants   (i.e., Stieltjes constants) quantitated the seasonal-sampled 
onchocerciasis endemic transmission-oriented explanatory predictor covariate coefficients.  Another sum that was 

then used to define the constants which then rendered  These constants were 

returned by the Mathematica function StieltjesGamma[n]. In the model construction phase   a generalization 

took  as the coefficient of as the function about . These generalized Stieltjes 

constants were implemented in Mathematica as StieltjesGamma[n, a].  Then  generated the Euler-

Mascheroni constant[i.e.,  ] A limit formula for  was then  given by  

where  was the Riemann zeta function. In this research, the Euler–Mascheroni constant denoted by the 
lowercase Greek letter gamma ( ) which was defined as the limiting difference between the harmonic series and 

the natural logarithm: In our  multi-seasonal  

predictive  model  represented the floor function. 
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Fig. 4. A  linear displayed S. damnosum s.l. riverine larval habitat model distribution renderd by by absorbing the 

coefficient of into the constant,  
 
 
 

 
 

 
 

Fig. 5. The  Stieltjes constants predicted larval count values where n increases seasonally to 200  as  renderd by 
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Fig. 6. Plots of the linear predicted S.  values of the Stieltjes constants as a function of   as model increases to 100. 

 
The Euler-Mascheroni constant  for the geopredictive spatiotemporal  onchocerciasis endemic transmission 

ArcGIS/SAS-based model was then expressed as  where id  the floor function and the log 

function[i.e.,  ] was  the logarithm to base 2. This calculations then rendered 

where was defined by the sum

The exact form of this model was then provided by =

=  where  was a harmonic number, was the Hurwitz 

zeta function,   and . Interestingly, Jacob et al. (1)  provided a similar series for 

valid for all ,employing   in a spatiotemporal 

geopredictor risk model for immature  S.damnosum s.l. where was a Bernoulli polynomial. In this research, 
this series converged extremely slowly, requiring  multiple terms in the predictive spatiotemporal onchocerciasis 

endemic transmission-oriented model  to get two digits of and many more for higher order Thereafter,  was 

also be expressed as a single sum using A set of constants  then related to  

was rendered by   We noted that the endemic transmission-

oriented Stieltjes constants also satisfied   
 
In this research, the Riemann zeta function was defined in the complex plane by the contour integral 

 for all , The Riemann zeta function is an extremely important special function 
of mathematics and physics that arises in definite integration and is intimately related with very deep results 
surrounding the prime number theorem. The prime number theorem gives an asymptotic form for the prime 

counting function , which counts the number of primes less than some integer . Legendre (1808) suggested 
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that for large n , with  where is the Legendre's constant, a formula which is 

correct in the leading term only, . In this research the Riemann 

hypothesis asserted that the nontrivial Riemann zeta function zeros of  in the onchocerciasis endemic 

transmission-oriented  ArcGIS/SAS-based model revealed   , ("critical thresholds." )based on the 
sampled covariates coefficients. 

 

 
Fig. 7. Plots of the linear predicted S. damnosum s.l. values of the Stieltjes constants as a function of   as model 
increased to5km from the capture point. 
 

Plots of the predicted S.  values of the Stieltjes constants as a function of   plot above revealed that parts of 

(i.e., values of along the critical line) as  was varied from 0 to 15 km  in the regressed seasonal-

sampled endemic  transmission data. The Riemann zeta function was split up into  where 

and  (i.e., Riemann-Siegel functions) .  The Riemann zeta function was then related to the Dirichlet lambda 

function and Dirichlet beta function by  and  .  Our 

ArcGIS/SAS-based model estimates was also related to the Liouville function by . 

Additionally, for ,  e  was represented in the onchocerciasis endemic transmission-
oriented model as the Glaisher-Kinkelin constant. In mathematics, the Glaisher–Kinkelin constant or Glaisher's 
constant, typically denoted A, is a mathematical constant, related to the K-function and the Barnes G-function. In 
this research the  approximate value was  which was provided by the multi-seasonal S. 

damnosum s.l. model distribution limit:   where  was the K-
function. 

In this research a n equivalent form involving the Barnes G-function was provided by  
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where  was  the gamma function rendered by

 The Glaisher-Kinkelin constant  then appeared in the Riemann zeta 

function of  the riverine spatiotemporal endemic transmission model as: and 

 for each km from the capture point when  was  the Euler–
Mascheroni constant 

Thereafter,  was  expressed analytically in terms of , , the Euler-Mascheroni constant , and the 

Stieltjes constants , [e.g., = , =

].Derivatives were then 

provided in closed form, [e.g., , = =  for ArcGIS Eulcidean-

distance 0 -5m ].The derivative of the Riemann zeta function for  was then  defined by =

  where  was  the Glaisher-Kinkelin constant for multiple sampled distance based measurements 

from the capture point.  We employed the series for  for   when 

and where  were  Stieltjes constants for all the sampled 
parameters.  

For validating  the first few sampled onchocerciasis endemic transmission-

oriented estimator values were then written as: = , = ,

= ,    and so on. Another set of 

related formulas were then generated as  , = ,

=

 
Thereafter we procured multiterm sums for odd  which included =

, = =

 

where  was  a generalized harmonic number.  
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In this research we noted that A number of sum identities involving include  =1, 

= , =  and = Sums involving the spatiotemporal-

sampled onchocerciasis integers multiples of the argument then includes = , =

, =  and so on where  was a 

harmonic number.  Two surprising sums involving  were then given by = and =

 where  was the Euler-Mascheroni constant  This geopredictive onchocerciasis endemic transmission-

oriented endemic equation was then generalized to for .  Other 

unexpected sums in the model was  then provided by   and

 which was a special case of the

where is a Hurwitz zeta function.  Considering the 

sum in the spatiotemporal onchocerciasis endemic transmission-oriented model then 

 where   log 2 was the natural logarithm of 2, which   in this research was found to be   a particular 

case of  where is the digamma function and  was the Euler-

Mascheroni constant derived from  A generalization of a result of Ramanujan (who 

gave the case) was then  given by  An additional set of 

sums over  in the predictive spatiotemporal onchocerciais endemic transmission-oriented ArcGIS/SAS-based 

model was then  given by = = = ; =

= = ; = =

=  where was a modified Bessel function of the first kind, 

was a regularized hypergeometric function. Unfortunately, these sums had no known closed-form expression. 

The inverse of the Riemann zeta function ,was then plotted which was the asymptotic density of th-
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powerfree numbers (i.e., square free numbers, cube free numbers, etc.) in the empirical dataset of endemic 

transmission-oriented residual explanatory covariates. The model provided gives the number of th-power 

free numbers for several spatiotemporal-sampled coefficients values of  in the dataset. 
 
We then found that an analytical solution to this integral existed in the linear-based S.damnosum s.l .risk 

model when  was assumed to follow a gamma distribution. The model also revealed that , was the vector of 
the sampled observation explanatory predictor covariate coefficients while , was independently Poisson 

distributed with and the mean parameter — that is, the mean 

number of  seasonal sampling events per spatiotemporal period — was rendered by  where  was 

a parameter vector. The intercept in the model was then  and the coefficients for the regressors 

were . Taking the exponential of ensured that the mean parameter  was nonnegative. Thereafter, 

the conditional mean was provided by . 
The seasonal-sampled S. damnosum s.l.-related geoparameter estimators were then evaluated using 

. Note, that the conditional variance of the count random variable was equal to the 

conditional mean (i.e., equidispersion) in the model [e.g.,  ]. In a log-linear model the 
logarithm of the conditional mean is linear (Toe et al., 1997). The marginal effect of any regressor in the model was 

then   provided by . Thus, a one-unit change in the th regressor in the 

model led to a proportional change in the conditional mean of .  
In this research, the standard estimator for our Poisson model was the maximum likelihood estimator. Since 

the independent-sampled observations were independent, the log-likelihood function was computed as

. Given the spatiotemporal-sampled dataset of 
parameter estimators (i.e., θ ) and an input vector x, the mean of the predicted Poisson distribution was then 

provided by . By so doing, the Poisson distribution's pmf of the sampled estimators was then 

rendered by . The pmf in a spatiotemporal predictive seasonal autoregressive risk 
model is often the primary means of defining a discrete probability distribution, and, as such, functions exist for 
either scalar or multivariate random variables, given that the distribution is discrete (Haight, 1967). 

Since in this research, the sampled S. damnosum s.l.-data consisted of m vectors 

, along with a set of m values  then, for the sampled parameter 
estimators  θ, the probability of attaining this particular set of the sampled observations was  provided by the 

equation .Consequently, we found the set of θ that made 
this probability as large as possible in the model estimates. To do this, the equation was first rewritten as a 

likelihood function in terms of θ: .Note the expression on the right hand side in the 
seasonal S.damnosums.l.risk model had not actually changed.  

Next, we used a log-likelihood [i.e.  ]. Because the logarithm is a 
monotonically increasing function, the logarithm of a function achieves its maximum value at the same points as 
the function itself, and, hence, the log-likelihood can be used in place of the likelihood in maximum likelihood 
estimation and other related techniques (Toe et al., 1997). Finding the maximum of a function in a model often 
involves taking the derivative of a function and solving for the parameter estimator being maximized, and this is 
often easier when the function being maximized is a log-likelihood rather than the original likelihood function 
(McCulloch and Searle, 2005). We noticed that the parameters θ only appeared in the first two terms of each term 
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in the summation. Therefore, given that we were only interested in finding the best value for θin the geopredictive 
onchocerciasis endemic transmission-oriented  model we dropped the yi!and simply wrote

. Thereafter, to find a maximum, we solved an equation which had 

no closed-form solution. However, the negative log-likelihood (LL) [i.e., ] was a convex function, and 
so standard convex optimization was applied to find the optimal value of θ . 

 We found that the Poisson process in our regression model was then  provided by the limit of a binomial 

distribution (3.1). Viewing the distribution as a function of the expected 

number of successes[i.e., ] instead of the sample size N for fixed , then allowed  equation (3.1) to become 

.As the sample size  become larger, the distribution then 

approached P when , ,,

, and . We noted that the sample size N 

had completely dropped out of the probability function, which had the same functional form for all values of  in 
our model.  

Thereafter, as expected, the Poisson regression distribution was normalized so that the sum of probabilities 

equaled 1, since The ratio of probabilities was then provided by the equation 

. The Poisson distribution reached a maximum when

 where  was the Euler-Mascheroni constant and  was a harmonic 

number, leading to the  equation  which  in this research could not  be solved exactly for n. 

        Next,  the moment-generating function of the Poisson distribution was given by M = 

,M=  and M= , when R= , R’=  so R=   The raw moments  
were  also computed directly by summation, which yielded an unexpected connection with the exponential 

polynomial and Stirling numbers of the second kind[i.e. ] which in this 
research was the  Dobioski's formula. In combinatorial mathematics, Dobinski’s formula states that the number of 

partitions of a set of n members is 



0 !

1

k

n

k

k

e (Haight, 1967). In this research, this number h was the nth Bell 

numberBn,. In the S.damnosums.l.-based regression model the formula was then 

viewed as a particular case, for x = 0, employing the relation  
 In this research, the expression given by the model’s Dobinski's formula was revealed as the nth moment of 

the Poisson distribution with expected value 1. Dobinski's formula was then the number of partitions of the set of 
the sampled endemic geopredictive S. damnosum s.l. transmission-oriented parameter estimators empirical 
dataset size (i.e.,n) which equaled the nth moment of that distribution. We used the Pochhammer symbol (x)n to 
denote the falling factorial. If x and n were nonnegative integers, 0 ≤ n ≤ x, then (x)n is the number of one-to-one 
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functions that map a size-n set into a size-x set (Jacob, et., 2012). In this research we let ƒ be any function from a 
size-n set A into a size-x set B.   We then let ƒ−1(u) = ,v ∈ A : ƒ(v) = u-. Then ,ƒ−1(u) : u ∈ B} was a partition of A. This 
equivalence relation was the "kernel" of the function ƒ.  Any function from A into B factors into one function that 
maps a member of A to that part of the kernel to which it belongs, and  another function, which is necessarily one-
to-one, that maps the kernel into B (Toe et al., 1997). In this research the first of these two factors was completely 
determined by the partition π that is the kernel for deriving optimal distance from the capture point. The number 
of one-to-one functions from π into B was then (x)|π|, in the regression model when |π| was the number of parts 

in the partition π. Therefore, the total number of functions from a size-n set A into a size-x set B was in 

then model when the index π ran through the set of all partitions of A. Thereafter, we had,

  


1nXE

, which 
was the number of partitions of the set A in the  S . damnosum s.l. ArcGIS/SAS-based model. We noted that in the 

model, ,  and  

In this research the Stirling numbers of the second kind  was variously denoted using  , , , , 

and Knuth's notation[i.e., ].Thereafter a set of  n elements in a robust multi-seasonal  onchocerciasis 

endemic predictive transmission-oriented model were subsequently partitioned in subsets, 

  and  = , = , , =   .This 
process  aided in  regressing the endemic transmission-oriented parameter estimation process parsimoniously. The 

Stirling numbers of the second kind were then computed from the sum  with 

a binomial coefficient employing generating functions = =

 where  was  the falling factorial [i.e.,  and

= = = ] for  and where  was  a 
Pochhammer symbol In mathematics, the Pochhammer symbol is the notation (x)n, where n is a non-negative 
integer (Boatin et al., 1997). Depending on the context the Pochhammer symbol, therefore, in the future an 
infectious disease vector ecologist or local abatement district manager  infectious disease vector ecologist or local 
abatement district manager   

may lineally quantitate either the rising factorial or the falling factorial in a spatiotemporal geopredictive 

onchocerciasis endemic transmission-oriented model. The falling factorial , may then be defined using 

 for  in the model residuals. 

Thereafter, the central moments in the model was computed as in the model so the mean, 

variance, skewness, and kurtosis were , and
,respectively. The characteristic function for the Poisson distribution in the Poisson predictive seasonal 

autoregressive hyperendemic model was then revealed as  and the cumulative distribution function 

was so  The mean deviation of the Poisson distribution  in the 

mode was then  rendered by The cumulative distribution functions of the Poisson and chi-
squared distributions were related in the S. damnosum s.l .model in the following ways  as  
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and  The 

Poisson distribution was then expressed in terms of whereby, the rate of changes were equal to the 

equation  The moment-generating function of the  Poisson distribution  generated from the 

sampled variables was also rendered by  Given a random variable x and a probability 

distribution function , if there exists an such that  for , where denotes the 

expectation value of , then is called the moment-generating function (Toe et al., 1997). Commonly, for a 
continuous distribution in a seasonal linear regression-based time-series dependent onchocerciasis endemic 

transmission-oriented model  the equation

is employed where is the the raw moment  (Jacob, et., 2012). For quantifying 

independent X and Y , the moment-generating function  in  a robust model which satisfies = ,

,  and  if ,the independent variables , , ..., have Poisson distributions with 

parameters , , ..., , and




N

j

jxX
1  (Boatin et al., 1997).In this research this was evident since the 

cumulant-generating function was . 
Many sums of reciprocal powers were then expressed in terms the cumulant-generating function in the 

geopredictive spatiotemporal onchocerciasis endemic transmission-oriented model. We defined these terms by 

 for and , , .... It was implemented in this form as HurwitzLerchPhi[z, s, a] 

in Mathematica.  A series formula for valid on a larger domain in the complex -plane was then given by 

 for distance-based measurements from 0-15km from the capture point 

which would hold for all complex and complex with .  
  
In the S. damnosum s.l. model the directed Kullback-Leibler (K-L) divergence between Pois(λ) and Pois(λ0) 

was provided by . In probability theory and information theory, the Kullback–
Leibler divergence along with information divergence, information gain, relative entropy are a non-symmetric 
measures of the difference between two probability distributions P and Q in a model (Toe et al., 1997). In this 
research, for quantitating the probability distributions P and Q of a sampled discrete random variable, the K–L 

divergence was defined by  . The model revealed that the average of the logarithmic 
difference between the probabilities P and Q was the average quantified using the probabilities P. The K-L 

divergence is only defined if P and Q both sum to 1 and if for any i such that (Boatin et al., 
1997).   

In the seasonal onchocerciasis endemic transmission oriented  model, if the quantity 0 ln  0 appeared in the 
formula, it was interpreted as zero. For distributions P and Q of the continuous random variable in the sampled 

ecological datasets KL-divergence was defined to be the integral [i.e., ] where p 
and q denoted the distances of P and Q. More generally, since P and Q were probability measures over the 
sampled dataset X, and Q was absolutely continuous with respect to P, then the K-L divergence from P to Q was 
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defined as in the seasonal  model where was the Radon–Nikodym derivative of Q 
with respect to P, provided the expression on the right-hand side existed. In mathematics, the Radon–Nikodym 
theorem is a result in measure theory that states that, given a measurable space (i.e., X,Σ), if a ς-finite measure
on (i..e, X,Σ) is absolutely continuous with respect to a ς-finite measure on (X,Σ)(Boatin et al., 1997). By so doing, 

in this research a measurable function f was rendered on X taking values in *0,∞), such that for 
any measured value which  rendered statistical significance based of the seasonal- sampled covariate coefficients. 

Likewise, since P was absolutely continuous with respect to Q in the S. damnosum s.l. regression model, the 

covariate coefficients were also defined using:  which in this research was 
recognized as the all distances in the empirical spatiotemporal-sampled onchocerciasis endemic transmission-
oriented empirical dataset for all  P relative to Q. Continuing, if was any measure on X in the model then 

and existed, and the  K-L divergence from P to Q  which in this research was given as

. The bounds for the tail probabilities of the Poisson random variable 

 were then derived in the endemic transmission-oriented model using a Chernoff bound argument 

as  and as  

We then considered the Euler product where  was the Riemann zeta function and  was 

the k th prime. . Thereafter, by taking the finite product up to  in the spatiotemporal S. damnosum 

s.l.endemic transmission model and pre-multiplying by a factor , we were able to employ   which 

rendered =  which was equivalent to  By doing so,  became  the Euler-

Mascheroni constant which represented the limit of the sequence = =  in the 

model when  was the  harmonic number which in this research had the  form




n

k

n
k

H
1

1

.  A harmonic number 

can be expressed analytically as  where was the Euler-Mascheroni constant and 

I s the digamma function (Toe et al., 1997). Our model revealed that the Euler product attached to 

the Riemann zeta function  employed the sum of the geometric series rendered from the spatiotemporal-
sampled dataset of S. damnosum s.l. ArcGIS/SAS-based Euclidean distance–based explanatory covariate 

coefficients which was then expressed as  . A closely related result was also 

obtained by noting that .We  also considered the variation of (3) with the sign changed to a sign 

and the moved from the denominator to the numerator which then rendered  for each km from the capture 
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point . For example we noted that for 10-15km in the model = =

= = = . 
We then tested the model for overdispersion with a likelihood ratio test. This test quantified the equality of 

the mean and the variance imposed by the Poisson distribution against the alternative that the variance exceeded 
the mean .For the negative binomial distribution, the variance = mean + k mean2 (k>= 0, the negative binomial 
distribution reduces to Poisson when k=0) (Toe et al., 1997). In this research, the null hypothesis was H0: k=0 and 
the alternative hypothesis was Ha  : k>0 . To carry out the test, we used the following steps initially and then ran 
the model using negative binomial distribution and a record log likelihood (LL) value. We then recorded LL for the 
Poisson model. We used the likelihood ratio (LR) test, that is, we computed LR statistic, -2(LL (Poisson) – LL 
(negative binomial). The asymptotic distribution of the LR statistic had probability mass of one half at zero and one 

half – Chi-sq distribution with 1 d.f. To test the null hypothesis further  at the significance level , we then used the 

critical value of Chi-sq distribution corresponding to significance level 2, that  is we rejected H0 if LR statistic >2  

(1-2 , 1 df).  
     Next, we assumed that the endemic transmission-oriented ArcGIS/SAS-based model explanatory covariate 

coefficients was based on the log of the mean, , which was a linear function of independent variables, log() = 

intercept + b1*X1 +b2*X2 + ....+ b3*Xm. This log-transformation implied that  was then the exponential function 

of independent variables,  = exp(intercept + b1*X1 +b2*X2 + ....+ b3*Xm). Instead of assuming as before that the 
distribution of the spatiotemporal-sampled district-level covariate coefficients [i.e.,Y ], was the number of 
sampling occurrences in a binomial distribution we were able to relax the generalized linear Poisson regression 
specification assumption about the equality of the mean and variance since in the model residuals. We found that 

the variance of negative binomial was equal to  + k2 , where k>= 0 was  a dispersion parameter. The maximum 
likelihood method was then used to estimate k as well as the parameter estimators of the model for 

log().Fortunately, the SAS syntax for running negative binomial regression was almost the same as for Poisson 
regression. The only change was the dist option in the MODEL statement. Instead of dist = poisson,dist = nb was 
used.  

The pmf of the negative binomial distribution with a gamma distributed mean was then expressed as

In this equation, the quantity in parentheses was the 

binomial coefficient, and was equal to This quantity was also 

alternatively written as for explaining all the “negative 
binomialness’ in the regression-based risk  model (Toe et al., 1997). 
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Fig. 3.  An animation revealing the iterations of the gradient descent in SAS/GIS applied to the spatiotemporal-
sampled  S. damnosum s.l. explanatory covariate coefficients. 

An autoregressive model was then attained in SAS/GIS using  An autoregressive 
coefficient is essentially an all-pole infinite impulse response filter with some additional interpretation placed on it 
|]. Some constraints were necessary on the values of the parameters of this model in order that the residuals 
remained stationary. For example, processes in the autoregressive models generated at each 5km interval from 
the capture point with |φ1| ≥ 1 were not stationary. The notation MA(q) was then also 

 constructed  to the moving average model of order q: where the θ1, ..., θq were the 

riverine  parameters of the models, μ was the expectation of  (often assumed to equal 0), and the , 
,...were , white noise error terms. The moving-average model is essentially a finite impulse response filter with 
some additional interpretation placed on it (Toe et al., 1997).  

            We then  considered an array of  nonlinear predictive  equations:  

employing different functions  where  and the objective 

function 

  

where . A  Jacobian matrix was then constructed 

using the time series dependent onchocerciasis endemic transmission –oriented explanatory covariate as 

  .We then evaluated these terms at  

rendered   , , and

. Surfaces are isosurfaces of and ,which can 
revealed the direction of descent(Boatin et al., 1997).  
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 Given the spatiotemporal-sampled empirical endemic transmission-oriented explanatory covariate 

coefficients dataset set of equations in variables , ..., ,  our models were written explicitly as 

or more explicitly as   using a  Jacobian matrix . These models were defined by

 The determinant of J was  the Jacobian determinant and was denoted

 The Jacobian matrix and determinant  for the predictive spatiotemporal S. damnosum s.l. 
endemic transmission-order model was computed using the Mathematica commands  
JacobianMatrix[f_List?VectorQ, x_List] : Outer[D, f, x] /; Equal@@(Dimensions/@{f,x} 
JacobianDeterminant[f_List?VectorQ, x_List] := Det[JacobianMatrix[f, x]] /;  Equal @@ (Dimensions /@ {f, x}.  

Taking the differential   revealed that was the determinant of the matrix , for each distant-based 

model and therefore provided the ratios of -dimensional volumes (contents) in and , 

  
   In this research the notation ARMA (p, q) referred to the model with p autoregressive terms and q moving-

average terms. This model contained the AR(p) and MA(q) models which was then expressed as:

The error terms  were assumed to be independent identically 
distributed random variables (i.i.d.) sampled from a normal distribution with zero mean: ~ N(0,ς2) where ς2 was 
the variance.  The spatially-dependent models were then specified in terms of the lag operatorL. In these terms 

then the AR(p) models was  provided  by where represented the polynomial

The MA(q) model was then  given by the equation where θ represented 

the polynomials. Finally, the combined ARMA(p, q)  models were given by or 

more concisely,  
Results from both a Poisson and a negative binomial (i.e., a Poisson random variable with a gamma distrusted 

mean) revealed that the explanatory covariate coefficients were highly significant, but furnished virtually no 
predictive power. In other words, the sizes of the population denominators were not sufficient to result in 
statistically significant relationships, while the detected relationships were inconsequential. 

 
Next, an Autoregressive Integrated Moving Average (ARIMA) analysis of individual time-series related data 

feature attribute revealed a conspicuous but, not very prominent first-order temporal autoregressive structure in 
the sampled data. Therefore, a random effects term was specified with the monthly time series data. This random 
effects specification revealed a non-constant mean across the study site that were variable which represented a 
district-constant across time. This specification also represented a district-specific intercept term that was a 
random deviation from the overall intercept term as it was based on a draw from a normal frequency distribution. 
This random intercept represented the combined effect of all omitted seasonal covariate coefficients that caused 
some georeferenced interventional villages to be more prone to onchocerciasis prevalence than other villages. 
Inclusion of a random intercept assumed random heterogeneity in the riverine –based villages propensity or 
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underlying risk of onchocerciasis prevalence that persisted throughout the entire duration of the time sequence 
under study. 

Table 1 presents the values for this random effects term, district-level for prevalence regressed on predicted 
prevalence rates. The Poisson mean response specification was mu = exp[a + re+ LN(population)] , Y ~Poisson(mu). 
The mixed-model estimation results included: a = =  exp[-2.9147 + (random effect)i]  where P(S-W) = 0.0005 and 
the Pseudo-R2 = 0.3103.This random effects term displayed no spatial autocorrelation, and failed to closely 
conform to a bell-shaped curve. Its variance implied a substantial variability in the prevalence of malaria across the 
sampled districts in the study site. The estimated model contained considerable overdispersion (i.e., excess 
Poisson variability): quasi-likelihood scale = = 69.565.Using this data a seasonal predictive  S. damnosum s.l. –
related map was constructed. 

A spatial filter algorithm was then constructed where: y = XB + E was written with a first-order spatially 
autocorrelated difference as :y l − ρW =  1 − ρW XB + E; hence y = XB +  1 − ρW −1E. The term:  1 − ρW −1 
was the spatial filter. Similarly, the mixed spatial lag model: y = ρWy + XB + E was written with a first-order 
spatially autocorrelated difference as: y 1 − ρW = XB + E. A pure spatial autoregressive model simply consists of 
a spatially lagged version of the dependent variable (McCulloch and Searle, 2005). A typical stochastically 
autocorrelated spatial variable can then  be modified by a spatially lagged autocorrelated variable (Jacob, et., 
2012). Both PSA and NSA eigenvectors were then selected by a stepwise regression procedure. To expand the 
inferential basis with a random effect, a generalized linear mixed model (GLMM) was then used to account for 
latent non-spatial residual correlation. GLMM estimation was computed using PROC NLMIXED. Randomized effects 
in multivariate linear models can be estimated using PROC NLMIXED with an adaptive quadrature. Gaussian 
quadrature in PROC NLMIXED using georeferenced seasonal-sampled aquatic larval habitat observational 
explanatory predictor covariate coefficient estimates of S. damnosum s.l.. The estimated model enabled 
generating accurate forecasts of an arbitrary function by using the parameter estimates and the empirical Bayes 
estimates of the random effects. In this research, PROC NLMIXED fit the specified nonlinear mixed model by 
maximizing an approximation using the likelihood integrated over the random effects in the sampled S. damnosum 
s.l. data. The variances of the random-effects parameter estimators became the covariance parameters in the 
predictive autoregressive habitat distribution model. Additionally, PROC NLMIXED appointed the standard errors in 
the model using the first derivative of the function (i.e., delta method). 
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Fig. 4. A predicted autoregressive seasonal  endemic  S. damnosums.l. –related risk map. 

 
 Spatial autocorrelation was evaluated among the ecological datasets of the S. damnosum s.l. explanatory 

predictor covariate coefficient estimates sampled in the study site in order to evaluate the distribution of the 
georeferenced indicator variables to determine the randomness of the observed patterns. It was proposed to 
approximate the moments of Moran's I by means of incorporating the spatiotemporal-sampled riverine habitat 
parameter estimators into the covariance matrix of the model to obtain a less biased test. Covariance matrix is a 
square matrix whose diagonal entries are the variances and whose off-diagonal entries are the covariances 
between the row column labeling variable (Toe et al., 1997). Therefore, neighboring georeferenced S. damnosum 
s.l.  habitats in the study site were identified based on the spatiotemporal field -sampled adult count values. The 

formulation for the Moran’s index of spatial autocorrelation used in this research was: I x =
n  Wij 2  xi−x  (xj−x )

 Wij 2   xi−x  2n
i=1

 

where  = 2    n
j=1

n
i=1 with i ≠ j. The values Wij were spatial weights stored in the symmetrical matrix [i.e., 

Wij = Wji] that had a null diagonal (W
ii
). In this research, a Moran's Index value near +1.0 indicated clustering 

while an index value near -1.0 indicated dispersion. Moran's I value and a Z score can be used to evaluate the 
significance of the index value (Gosper et al., 1972). Z scores are measures of standard deviation that can help 
decide whether or not to reject the null hypothesis. 

In this research, the weighted matrices was initially generalized to an asymmetrical matrix W where it was a 
stochastic matrix that expressed each observed seasonal sampled S. damnosum s.l.  habitat value yi as a function 
of the average of habitat location i’s nearby field-sampled counts which allowed a single autoregressive parameter,
ρ

, to have a maximum value of 1 [27]. Matrix W was generalized by a non-symmetric matrix W * by using 

= (W∗ + W∗T)/2. Usually, this matrix is symmetric (Wij=Wji), but it can be generalized to a non-symmetric matrix 

W by using  W = (W∗ + W∗T)/2 *17+. Moran’s I was then rewritten using the matrix notation: 

I x =
n

1tW1

xTHHWHHx

xTHHx
=

n

1tW1

xTHWHx

xTHx
, (2.2) where H = (I − 11T/n) was an orthogonal projector verifying that H = H2, 

i.e., H was independent.  
In this research we quantified the heteroskedastic disturbances in the  S. damnosum s.l. ArcGIS/SAS-based 

models using the model specification  =   I −< 𝜌 >diag W′  I −< 𝜌 >diag W  
−1

ς2 (2.5) where the diagonal 
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matrix of autoregressive parameters, < 𝜌 >diag , contained two parameters: ρ+ for those georeferenced habitat 

pairs at the  riverine study site  displaying positive spatial dependency, and ρ for those habitat pairs displaying 
negative spatial dependency. When a mixture of positive and NSA is present in the data, a more explicit 
representation of both effects leads to a more accurate interpretation of empirical results [17]. For example, 
letting ς2 = 1 and employing a 2-by-2 regular square tessellation: 

 =
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 for the vector  

y1
y2
y3
y4

 , enabled posited a positive 

relationship between the seasonal-sampled  S. damnosum s.l.  habitats by the individual-sampled georeferenced 
observational explanatory predictor covariates coefficients, y1 and y2, a negative relationship between the 

sampled covariate coefficients, y3 and y4, and on no relationship between covariate coefficients  y1 and y3 and 

between y2 and y4. This covariance matrix specification then yielded the expression= μ I − ρ+Y < I+ >diag−

ρ− < I− >diag 1 +  ρ+ < I+ >diag+ ρ− < I− >diag WY + ε (2.6) where I+ was a binary 0-1 indicator variable which 

denoted those georeferenced observational explanatory predictor variables displaying positive spatial 
dependency, and I− was a binary 0-1 indicator variable denoting those habitats displaying negative spatial 
dependency, with I+ + I− = 1.  

. 
In this research if either ρ+ = 0 and hence I+ = 0 and I− = 0) or I− = 0 and I+ = I, then equation (2.3) 

reduced to equation (2.1). This indicator variable classification was parsimoniously constructed  in accordance with 
the quadrants of the corresponding Moran scatterplot in ArcGIS generated using the sampled georeferenced data 
attributes  By graphically portraying the relationship between two quantitative sampled observational explanatory 
predictor covariate coefficients measured for the same habitat, a the scatterplot related  the numerical value 
generated by a correlation coefficient formula. The Moran’s scatterplot was based upon expression P Yi = 1 Xi =
exp Xiβ / 1 +  Xiβ   (2.7), where β was the (K+1)-by-1 vector of non-redundant parameters and P Yi = 0 Xi =
1 − P Yi = 1 Xi . Independent Bernoulli outcomes were then denoted by Yi = 0 or 1, taken at a sampled habitat 
locations i = 1, 2, …, n, at the study site .These indicator variables were then denoted by the spatiotemporal 
seasonal field and remote-sampled S. damnosum s.l.  observational explanatory predictor variables using  Xi, a 1-
by-(K+1) vector of K covariate values and a 1(for the intercept term for i.). We also used the simplest form of this 
expression: P Yi = 1 Xi = P Yi = 1 α exp α / 1 +  α  , for a constant α using a bivariate regression notation. 
The constant probability across the spatiotemporal seasonal -sampled riverine larval habitat georeferenced 
observational explanatory predictor covariate coefficient estimates was then  described by β0 in a multiple 
regression notation, where P (Yi = 1| α ) → 0 as α → −∞ , P(Yi = 1| α ) → 0.5 as α → 0, and P(Yi = 1| α ) → 1 as α → 
∞ 

A Morans scatterplot was then generated based on The SAS/GIS spatial database consisted of the SAS data 
sets that contained the time series-dependent sampled S.damnosums.l.  geocoordinates which identified 
information of seasonal attribute features in the ecological  datasets. A spatial entry ( i.e.,a SAS catalog entry of 
type GISSPA) identified which SAS datasets contained the spatial information. The spatial entry also stored the 
sampled elements based on the composites that defined how the riverine-sampled habitat explanatory predictor 
variables in the seasonal sampled spatial data defined the boundaries of area layers for constructing the predictive 
risk map ( i.e;, polygonal indexes). A lattice hierarchy then defined which feature attributes in the  seasonal 
S.damnosums.l. data were enclosed by the sampled covariates (i.e., the relationships among the S.damnosums.l.  
polygonal variables). The spatial entry alternatively contained references to the spatial entries that were 
subsequently merged into a single spatial database. A coverage entry (i.e., a SAS catalog entry of type GISCOVER) 
then selected a subset of the spatial data that was then available for display in a predictive autoregressive endemic 
risk map format. Thereafter, SAS catalog entries of type GISLAYER identified the time-series dependent 
S.damnosums.l.  Seasonal features attributes that had common characteristics and, additionally, specified how 
they were displayed as layers in the predictive endemic risk map. We also used a SAS catalog entry of type GISMAP 
which specified which layers from a particular coverage were included in the autoregressive predictive risk map. 
The map entry then stored the names of the sampled feature attribute data variables that were associated with 
the predictive risk map, along with definitions of how the sampled variables were linked to the data and the name 
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of the SAS dataset that contained the labels for the mapped endemic features.  Various GIS actions were then 
performed employing the seasonal mapped features data attributes which were then used for generating 
definitions for map legends values for display. We also created new SAS/GIS spatial databases from the sampled 
riverine-village based spatial data in other formats by interactively employing the GIS Spatial Data Importing 
window and then programmatically employing the SAS/GIS Batch Import process.  Figure 5 portrays scatterplots of 
observed versus predicted prevalence rates for selected months, and reflects the considerable amount of noise in 
the MBR-related prevalence data feature attributes  as well as the random effects term accounting for about a 
third of the variance in the space-time series of onchocerciasis prevalence. Based on the sampled district level 
random effects model was generated. As with most statistical procedures, the random effects term corresponded 
more closely with the data in the center of the time-series. This goodness-of-fit feature implied that although the 
random effects term can be used for predictive purposes, it is less effective for lengthy (e.g. > 1 year) forecasts for 
mapping endemicity up from 0 to 15km.After 15km the model revealed excessive noise indicating no endemicity. 

 

 
Fig. 5. Scatterplots of selected observed versus predicted S. damnosum s.l. endemic transmission-oriented values  
past 15km from the capture point. 

 
The dependency in our model was then qualitatively assessed using random effect specifications. Random 

effects model specifications address samples for which independent observations are selected in a highly 
structured rather than random way, and involve repeated measures in frequentist analyses (Toe et al., 1997). This 
average, however, in this research, ignored both spatial and serial uncertainty correlation coefficients in the space-
time series. A random effects model essentially works with these averages, adjusting them in accordance with the 
correlational structure latent in their parent space-time series, as well as their simultaneous estimation (Boatin et 
al., 1997). For example, in this research, the random effects model specification was achieved by fitting a 
distribution with as few parameter estimators as possible (e.g., a mean and a variance for a bell-shaped curve), 
rather than n means (i.e., fixed effects) for the n sampled  riverine study site georferenced locational attributes 
(e.f., village stratified prevalence rates) . Consequently, a relationship existed between the time-series means and 
the random effects in the predictive seasonal S.damnosums.l. model (Figure 6.a). This random effects specification 
included n indicator variables, each for a separate specific district local intercept (i.e., one local intercept was 
arbitrarily set to 0 to eliminate perfect multicollinearity with the global mean). Here, the local mean for was set to 
0. The estimated global mean was -3.6723, the mean of the random effects term was -0.0010, and the mean of the 
local means was 0.4837; the sum of these three values was -[-2.9147] which in this research was exactly the same 
as the random effects global mean. The scatterplot of the random effects versus the local intercepts corresponded 
to a straightly line with no dispersion about it. By using a random effect specification we were able to predict 
onchocerciasis prevalence rates and seasonal-sampled S. damnosums.l.,  throughout the riverine study site. The 
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following predictive equation was then employed to forecast the expected value of the prevalence of 
onchocerciasis for the surrounding interventional villages:  prevalence= exp[-[-2.9147 + (random effect)i] .   

4. Discussion 

Initially, we constructed a Poisson and a negative binomial regression models in PROC GEN MOD for 
examining all latent autocorrelation error coefficients in a spatiotemporal S. damnosum s.l. endemic risk 
transmission-oriented model for a riverine study site in Burkina Faso. In the  endemic transmission-oriented 
ArcGIS/SAS-based model risk model, a discrete stochastic  prevalence-oriented predictor variable was defined to 
have a Poisson distribution with parameter λ>0, if for k = 0, 1, 2, (e.g., spatiotemporal-sampled S.damnosum s.l. 

capture point Euclidean-count values)  while the pmf  was provided by: where e is the 
base of the natural logarithm (e = 2.71828...) and  k! was the factorial of k.. In probability theory and statistics, the  
pmf is a function that gives the probability that a discrete random variable is exactly equal to some value (Toe et 
al., 1997). The mode of a Poisson-distributed multiseasonal -sampled S. damnosum s.l.-related randomized 

explanatory predictor variables with a non-integer λ was then be equal to , which would then essentially be the 
largest integer less than or equal to λ in the model. Hence, all of the cumulants of the Poisson distribution in the 
geopredictive onchocerciasis endemic transmission-oriented model would be equal to the expected value λ 
calculated at each sampled interventional study site regardless of location or the value of the Poison multi-
seasonal-sampled count data.   By so doing, the  seasonal-sampled explanatory predictor covariate coefficients of 
variation in the  Poisson-specified multi-seasonal  S. damnosum s.l. related regression risk-based  model could be 

quantitated  as while the index of dispersion was be 1. Thereafter, the mean deviation about the mean in 

the model  was expressed as   for determining the statistical significance of the regressed 
explanatory covariate coefficients.  

  The PROC GENMOD procedure estimated the sampled parameters of the model numerically through an 

iterative fitting process. The dispersion parameter  was then estimated by MLE thereafter by tabulating the 
residual deviance by Pearson’s chi-square  and dividing by the degrees of freedom (d.f). The deviance for our 
spatiotemporal onchocerciasis endemic transmission-oriented predictive linear risk map model (e.g.,M0) based on 

an empirical dataset (i.e., y) was then  defined as  Here denoted 

the fitted values of the sampled parameter estimators in the endemic-transmission-oriented model M0, while  
denoted the fitted parameters for the "full model" (i.e., "saturated model").  If we let κ be a finite or infinite 
cardinal number and M a model in some first-order language, then M is called κ-saturated if for all subsets A ⊆ M 
of cardinality less than κ, M realizes all complete types over A(Nielsen, 1897) The model M is called saturated if it is 
|M|-saturated where |M| denotes the cardinality of M (Toe et al., 1997) In our research, fitted values were 
implicitly functions of the sampled  endemic transmission-oriented explanatory covariate coefficient indicator 
observational values (i.e., y). Here the full model was a model with a parameter for every  sampled S. damnosum 
s.l. observation so that the data were fitted exactly. This expression was simply −2 times the log-likelihood ratio of 
the reduced model compared to the full model. The deviance was then  used to construct various GLMs  where  it 
performed a similar role to  the residual variance commonly derived  from linearly quantitating the time series 
dependent  S. damnosum s.l. ANOVA in linear models (RSS).Interestingly our  GLM, had two nested sub- models, 
M1 and M2.  M1 contained the parameters in M2, and k additional sampled S. damnosum s.l. related parameters. 
As such, under the null hypothesis that M2 was the true model, the difference between the deviances for the 
predictive l endemic transmission model followed an approximate chi-squared distribution with k-degrees of 

freedom. It is important to note that although usage of the term "deviance"[i.e.,  s]. By so doing 
we were able to generate viable covariances, standard errors, and -values while computing the sampled 
observational predictor based on the asymptotic normality of the MLE.   

Fortunately, in our model construction process, a simple recursive method was useful for linearally 
characterizing Poisson process functionals which required only the use of conditional probability in the robust 
spatiotemporal S. damnosum -related regression based risk model distribution. A simple recursive method is useful 
for characterizing Poisson -derived process functionalism solely employing the conditional probability estimates 
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(Jacob, et., 2012). By so doing, the generating function of the Touchard polynomials in the spatiotemporal S. 

damnosum s.l. predictive endemic regression-based risk model  was expressed as  
Thereafter,  the contour-integral representation of the seasonal-sampled parameter estimators  was summarized 

for optimizing the residual parameter uncertainty estimation employing   . In the 
future, Touchard polynomials may be used for constructing spatiotemporal linear predictive S. damnosum s.l. 
regression risk ArcGIS/SAS-based model building employing the real part of the integral, to an non-integer order by 

intuitively applying: [see 2].  
A  SAR and a spatial filter model specification was then  constructed to help describe selected Gaussian and 

Poisson random variables rendered from the linear-based S.damnosum s.l. model residuals. When coupled with 
regression equations and a normal probability model, an autoregressive specification can result in a covariation 
term characterizing autocorrelation uncertainty components in empirical  datasets of field and remote-sampled 
georeferenced explanatory covariate coefficient estimates (Boatin et al., 1997). A eigenfunction decomposition 
spatial filtering analysis was then performed by constructing a linear combination of a subset of the eigenvectors 
of a modified geographically weighted matrix. We attempted to generate a subset of eigenvectors by selecting a 
stepwise regression procedure. In this research, the SAR used a response variable, Y, as a function of nearby 
sampled Y riverine village-level values [i.e., an autoregressive response ], and/or the model residuals of Y was a 
function of nearby Y sampled model covariate coefficient estimate [i.e., spatial error specification].  

In this research we defined a right eigenvector as a column vector  for satisfying  where A 

was the seasonal predictive S. damnosum s.l. autoregressive matrix, so which meant the right 

eigenvalues rendered had  zero determinants, [i.e., ] Similarly, we defined  a left eigenvector as 

a row vector satisfying . Taking the transpose of each side in the risk model 

we then re-wrote  the autoregressive equation as Thereafter, we rearranged the endemic 

transmission-orienetd model  and obtained  which meant By rewriting 
the endemic transmission-oriented model the spatiotemporal-sampled residuals also rendered  

 = = =  where the last step after quantitating a 

viable identity was  Equating (◇) and   in the seasonal S. damnosum s.l. risk  
model revealed that they were both equal to 0 for arbitrary A and X  , therefore the predictive autoregressive 

framework required  that , (i.e., left and right eigenvalues had to be equivalent which was not true for 

the eigenvectors in the model). We then let be a matrix formed by the columns of the right eigenvectors and

be a matrix formed by the rows of the left eigenvectors. Thereafter, we let By so doing, 

=  and =  and =  and  =  thus  But this 

equation was not of the form CD=DC where D was a diagonal matrix , so thus we could not achieve . In 
particular since A was a symmetric matrix then the left and right eigenvectors rendered from the S. damnosums.l. 
risk model were not transposed and as such A was not a self-adjoint matrix (i.e., Hermitian) and the left and right 
eigenvectors were not adjoint matrices where D was a diagonal matrix. If A  is a symmetric matrix, then the left 
and right eigenvectors are simply each other's transpose, and if A is a self-adjoint matrix (i.e., it is Hermitian), then 
the left and right eigenvectors are adjoint matrices (Toe et al., 1997).In mathematics, an Hermitian matrix  is a 
square matrix with complex entries that is equal to its own conjugate transpose – that is, the element in the i-th 
row and j-th column is equal to the complex conjugate of the element in the j-th row and i-th column, for all 

indices i and j:  Fortunately, the Hermitian property in this research was written concisely as  
Our model  revealed that that if the conjugate transpose of a  spatially autoregressive seasonal predictive  S. 

damnosum s.l. –related matrix can be denoted by  covariate significance levels can be attained. Further, 
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since every Hermitian S. damnosum s.l. –related matrix is a normal matrix, and then the finite-dimensional spectral 
theorem can be applied for targeting endemic regions. 

The spectral theorem states that if we let A be an operator on a finite-dimensional inner product space A is 
said to be normal if A* A = A A*.(McCulloch and Searle, 2005) Therefore, an infectious disease vector ecologist or 
local abatement district manager  can show that A is normal if and only if it is unitarily diagonalizable  by 
employing  the Schur decomposition, The Schur decomposition reads as follows: if A is a n × n square matrix with 

complex entries, then A can be expressed as  where Q is a unitary matrix . Therefore the  inverse 
Q−1  would be conjugate transpose Q* of Q , in a spatiotemporal  predictive  S. damnosum s.l. –related endemic 
transmission-oriented model where U is an upper triangular matrix, (e.g., Schur form of A) (Toe et al., 1997).This  U 
would be  similar to A in the endemic   model  since it would have  the same multiset of eigenvalues, and since it is 
triangular, those eigenvalues are the diagonal entries of U. The Schur decomposition implies that there exists a 
nested sequence of A-invariant subspaces {0} = V0 ⊂ V1 ⊂ ... ⊂ Vn = Cn, and that there exists an ordered 
orthonormal basis (for the standard Hermitian form of Cn) such that the first i basis vectors span Vi for each i 
occurring in the nested sequence(McCulloch and Searle, 2005). Phrased somewhat differently, the first part of the 
theoreum states that an operator T on a complex finite-dimensional vector space stabilizes a complete flag 
(V1,...,Vn). Therefore T must be diagonal in the S. damnosum s.l. regression-based model since normal upper 
triangular matrices would be diagonal. The converse can also be quantitated. For example, A is normal in a time 

series S. damnosum s.l. geopredictive model   if, and only if, there exists a unitary matrix U such that
where D is a diagonal matrix. Then, the entries of the diagonal of D would be the eigenvalues of A. The column 
vectors of U would then be the eigenvectors of A and they are orthonormal. Unlike the Hermitian case, the entries 
of D need not be real. 

While an n x n matrix from a seasonal  S. damnosum s.l. risk  model always has n eigenvalues, some or all of 
which may be degenerate. For example, traditionally in autoregressive vector arthropod-borne  seasonal predictive 

models (e.g., S. damnosums.l. risk ArcGIS/SAS model) the matrix has only the single eigenvector . 
Eigenvectors may be computed using eigenvectors that are not linearly independent which then can be returned 
as zero vectors. Eigenvectors and eigenvalues can then be used for risk based endemic transmission-oriented 
modeling for delineating important onchocerciasis transmission zones based on prolific MBR prevalence related 

rates.  For example; given a spatiotemporal S. damnosum s.l. risk-based  2x2 matrix A with eigenvectors , , 

and and corresponding eigenvalues , , and , then an arbitrary vector can be written 

Applying the matrix , =  =

then If, , and 

, therefore follows in the seasonal predictive autoregressive model residuals that that 
so repeated application of the matrix to an arbitrary vector would result in a vector proportional to the 
eigenvector with largest eigenvalue. By so doing, a heirachary of  covariates maybe generated from a S. 
damnosums.l.risk map remotely targeting specific pathogen transmission zones (e.g., hyperendemic regions). 

In this research, we utilized a function which defined all the spatiotemporal-sampled predictive S. damnosum 
s.l. endemic transmission model residuals which were Lipschitz continuous with the Lipschitz constant K = 1, as it  
was  differentiable and the absolute value of the derivative was bounded above by 1.  Likewise, the sine function 
was Lipschitz continuous and  its derivative, the cosine function, was bounded above by 1 in the absolute value 
estimation in the endemic model.  The function f(x) = |x|  was then defined then on the  sampled endemic 
transmission-oriented model which were  Lipschitz continuous with the Lipschitz constant equal to 1, by the 
reverse triangle inequality. The reverse triangle inequality is an elementary consequence of the triangle inequality 
that gives lower bounds instead of upper bounds. For plane geometry the statement is: Any side of a triangle is 
greater than the difference between the other two sides.(Haight, 1967) In the case of a normed vector space, the 

statement is: or for metric spaces, | d(y, x) − d(x, z) | ≤ d(y, z). This implies that the 
norm ||–||  in our  predictive spatiotemporal S. damnosum s.l. riverine endemic transmission-oriented model as 

http://en.wikipedia.org/wiki/Normal_matrix
http://en.wikipedia.org/wiki/Spectral_theorem
http://en.wikipedia.org/wiki/Spectral_theorem
http://en.wikipedia.org/wiki/Normal_matrix
http://en.wikipedia.org/wiki/Schur_decomposition
http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Complex_numbers
http://en.wikipedia.org/wiki/Unitary_matrix
http://en.wikipedia.org/wiki/Conjugate_transpose
http://en.wikipedia.org/wiki/Upper_triangular_matrix
http://en.wikipedia.org/wiki/Similar_(linear_algebra)
http://en.wikipedia.org/wiki/Multiset
http://en.wikipedia.org/wiki/Eigenvalue
http://en.wikipedia.org/wiki/Orthonormal_basis
http://en.wikipedia.org/wiki/Hermitian_form
http://en.wikipedia.org/wiki/Linear_operator
http://en.wikipedia.org/wiki/Orbit-stabilizer_theorem#Orbits_and_stabilizers
http://en.wikipedia.org/wiki/Flag_(linear_algebra)
http://en.wikipedia.org/wiki/Unitary_matrix
http://en.wikipedia.org/wiki/Diagonal_matrix
http://en.wikipedia.org/wiki/Eigenvalue
http://reference.wolfram.com/mathematica/ref/Eigenvectors.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/Eigenvalue.html
http://mathworld.wolfram.com/Vector.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/Eigenvalue.html
http://en.wikipedia.org/wiki/Differentiable
http://en.wikipedia.org/wiki/Sine
http://en.wikipedia.org/wiki/Reverse_triangle_inequality


B.G. Jacob et al. / Scientific Journal of Pure and Applied Sciences (2013) 2(12) 401-460 

  

455 

 

  

well as the distance function d(x, –) were Lipschitz continuous with Lipschitz constant 1, and therefore were in 
particular uniformly continuous. 

The proof for the reverse triangle employs the regular triangle inequality,and 

:

.(McCulloch and Searle, 2005) Combining 

these two statements, however, renders :
which interestingly is a Lipschitz continuous function that may not be differentiable in a spatiotemporal-sampled 
predictive S. damnosum s.l. endemic transmission model. More generally, a norm on a vector space is Lipschitz 
continuous with respect to the associated metric in the endemic transmission model with the Lipschitz constant 
would equal to 1.But , a differentiable function  in the model,(e.g.,  g : R → R) would be  Lipschitz continuous (with 
K = sup |g′(x)|) if, and only if, it has bounded first derivative; one direction follows from the mean value theorem. 
In particular, any continuously differentiable function is locally Lipschitz, as continuous functions in a 
spatiotemporal-sampled predictive S. damnosum s.l. endemic transmission model are locally bounded so its 
gradient would also be locally bounded as well.  A Lipschitz function g : R → R is absolutely continuous and 
therefore is differentiable almost everywhere, that is, differentiable at every point outside a set of Lebesgue 
measure zero(Haight, 1967). Its derivative in the predictive S. damnosum s.l. endemic transmission model residual 
would then be  essentially bounded in magnitude by the Lipschitz constant, and for a < b, the difference g(b) − g(a)  
which then would be  equal to the integral of the derivative g′ on the interval *a, b].  Conversely, if ƒ : I → R is 
absolutely continuous and thus differentiable almost everywhere in the endemic model residuals, and satisfies 
|ƒ′(x)| ≤ K for almost all x in I, then ƒ is Lipschitz continuous with Lipschitz constant at K. More generally, 
Rademacher's theorem would extend  the differentiability result to Lipschitz mappings between Euclidean spaces: 
a Lipschitz-related  spatiotemporal-sampled predictive S. damnosum s.l. endemic transmission risk map 
ƒ : U → Rm, where U is an open set in Rn, is almost everywhere differentiable. Moreover, if K is the best Lipschitz 

constant of ƒ, then whenever the total derivative Dƒ exists in the model.  
There is a version of Rademacher's theorem that holds for Lipschitz functions from a Euclidean space into an 

arbitrary metric space in  predictive S. damnosum s.l. endemic transmission model in terms of metric differentials 

instead of the usual derivative For example, suppose that is a sequence of Lipschitz  spatiotemporal S. 

damnosum s.l. model continuous mappings between two Euclidean-distance -based metric spaces, and that all 
have Lipschitz constant bounded by some K. If ƒn converges to a model for endemic mapping ƒ uniformly, then ƒ is 
also Lipschitz, with Lipschitz constant bounded by the same K. In particular, this implies that the set of real-valued 
functions in the model would  be a compact metric space with a particular bound for the Lipschitz constant  which 
would be a closed and convex subset of the Banach space of continuous functions in the model. This result will not 
hold however, for sequences in which the functions in the  spatiotemporal-sampled endemic transmission model 
may have unbounded  Lipschitz constants. In fact, the space of all Lipschitz functions in such a model would have  
an impact on a compact metric space  which then would be i dense in the Banach space of continuous functions 
which in turn  would be  an elementary consequence of the Stone–Weierstrass theorem. The statement of the 
approximation theorem as originally is as follows: Suppose ƒ is a continuous complex-valued function defined on 
the real interval [a,b] (Toe et al., 1997). For every ε > 0, there exists a polynomial function p over C such that for all 
x in *a,b+, we have | ƒ(x) − p(x) | < ε, or equivalently, the supremum norm || ƒ − p || < ε. If ƒ is real-valued, the 
polynomial function can be taken over R(McCulloch and Searle, 2005).  

As a consequence of the Weierstrass approximation theorem, an infectious disease vector ecologist or local 
abatement district manager  can show that the space C[a,b] is separable spatiotemporal-sampled predictive S. 
damnosum s.l. endemic transmission risk model when  the polynomial functions are dense, and each polynomial 
function is uniformly approximated by one with rational coefficients. Unfortunately, there are only countably many 
polynomials with rational coefficients which may delineate onchocercsis endemic transmission zones .For example  
Since C[a,b] is Hausdorff and separable it follows that C[a,b] has cardinality equal to 2ℵ0 — the same cardinality as 
the cardinality of the reals (sampled. riverine endemic transmission-oriented estimators) may be applicable in a 
spatiotemporal-sampled predictive S. damnosum s.l. risk map. A version of the Stone–Weierstrass theorem may 
also be also true when X  in the endemic model is only locally compact.  If we let C0(X, R) be the space of real-
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valued continuous functions on X which vanish at infinity; that is, a continuous function f is in C0(X, R) if, for every ε 
> 0, there exists a compact set K ⊂ X such that f < ε on X \ K.(Nielsen, 1897) C0(X, R) is a Banach algebra with the 
supremum norm(Toe et al., 1997). Also A subalgebra A of C0(X, R) is said to vanish nowhere if not all of the 
elements of A simultaneously vanish at a point; that is, for every x in X, there is some f in A such that f(x) ≠ 0. The 
theorem  would then generalize as follows in  spatiotemporal-sampled predictive S. damnosum s.l. endemic 
transmission-oriented risk map: Suppose X is a locally compact Hausdorff space and A is a subalgebra of C0(X, R) in 
the endemic model  then A would be considerably  dense in C0(X, R) given the topology of uniform convergence  if 
and only if it separates georeferenced  points (village stratified prevalence data).  This version clearly implies the 
previous version in the case when X is compact, since in that case C0(X, R) = C(X, R)  in the predictive S. damnosum 
s.l.  model. In topology and related branches of mathematics, a Hausdorff space, separated space or T2 space is a 
topological space in which distinct points have disjoint neighborhoods(Toe et al., 1997). Of the many separation 
axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and 
discussed as  It implies the uniqueness of limits of sequences, nets, and filters (Nielsen, 1897). 

Additionally, the Stone–Weierstrass theorem can be used to prove the following two statements which go 
beyond Weierstrass's result in spatiotemporal-sampled predictive S. damnosum s.l. endemic transmission risk 
map. For example, if f is a continuous real-valued function defined on the set *a,b+ × *c,d+ and ε > 0, then there 
exists a polynomial function p in two of the sampled endemic transmission explanatory predictor variables such 
that | f(x,y) − p(x,y) | < ε for all x in [a,b] and y in [c,d]. Additionally, if X and Y are two compact Hausdorff spaces 
and f : X×Y → R in the endemic transmission model which is a continuous function, then for every ε > 0 there exist 
n > 0 and continuous functions f1, f2, …, fn on X and continuous functions g1, g2, …, gn on Y such that || f − ∑figi || 
< ε.  The theorem may also have other applications to analysis, including: Fourier series whereby a set of linear 
combinations of functions in spatiotemporal-sampled geopredictive onchocerciasis endemic transmission-oriented 
risk ArcGIS SAS-based map en(x) = e2πinx, n ∈ Z is dense in C([0,1]/{0,1}). In such circumstances we can identify the 
endpoints of the interval [0,1] to obtain a circle. An important consequence of this would that the en in the model 
would be  an orthonormal basis of the space L2([0,1]) of square-integrable functions on [0,1].  Additionally, every 
Lipschitz spatiotemporal-sampled geopredictive endemic transmission model continuous map would be uniformly 
continuous, and hence a fortiori continuous. More generally, a set of functions with bounded Lipschitz constant 
would forms an spatiotemporal-sampled predictive S. damnosum s.l. endemic transmission model equicontinuous 
dataset.  

Further, the Arzelà–Ascoli theorem  would imply that if is a uniformly bounded sequence of functions 
with bounded Lipschitz constant, in spatiotemporal-sampled predictive S. damnosum s.l. endemic transmission risk 
map then it would aslo may have  a convergent subsequence. In simplest terms, the theorem can be stated as 
follows: Consider a sequence of real-valued continuous functions (ƒn)n∈N defined on a closed and bounded 
interval [a, b] of the real line. If this sequence is uniformly bounded and equicontinuous, then there exists a 
subsequence (ƒnk) that converges uniformly.  As such , the limit function would  also be Lipschitz, with the same 
bound for the Lipschitz constant spatiotemporal-sampled predictive S. damnosum s.l. endemic transmission model 
equicontinuous dataset.  . In particular the set of all real-valued Lipschitz functions on a compact metric space X 
having Lipschitz constant  ≤ K  is a locally compact convex subset of the Banach space C(X). F 

 Many aspects of this research merit future research for constructing robust spatiotemporal-sampled 
predictive S. damnosum s.l. endemic transmission risk map especially involving the Banach space. For example, in 

this research a Banach space of bounded continuous functions  was defined on a set E of 
an n-dimensional Euclidean space in the predictive spatiotemporal S . damnosum s.l. riverine model .The residuals 
revealed that our model was able to satisfy a Hölder condition on  E. but only  if the Hölder space was calculated as 

,  when  based on   the sample endemic transmission-oriented explanatory covaraite coefficient 
integer- based values  consisting  of the functions that were m times continuously differentiable on  E (i.e., 

continuous for  m=0 ). Thus in the future, Hölder space in the model can  be described by , 

, where  is a spatiotemporal sampled predictive S . damnosum s.l. riverine ArcGIS/SAS endemic 
transmission-oriented model, consisting of the functions that are times continuously differentiable (e.g., 
continuous for dry season  m=0 counts) and whose m -th derivatives satisfy the Hölder condition with index . The 

bounded E a norm could then theoretically be  introduced in and as follows: 
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where, the sampled integer can be formally calculated employing  The 
fundamental properties of Hölder spaces for a bounded connected domain in the time series dependent S. 
damnosum s.l. riverine endemic transmission-oriented model parameters  (i.e., E  is the closure of  E) where: 1) 

is imbedded in if, , where k and m are the  time series sampled  

covariate coefficient integers values , . Here and the constant  A 

would be  independent of . The unit sphere of  would be then compact for  if, 

. Consequently, any bounded set of functions in the endemic transmission-oriented predictive 

model residuals from  would contain a sequence of functions that converges in the metric of 

 or, to a function of . This would also hold for scalar functions on a compact metric space X  
in the  predictive S. damnosum s.l. endemic transmission-oriented risk model  for satisfying a Hölder condition with 
respect to the metric on X which then would delineate all  ArcGIS-Euclidean distance –based  endemic 
transmission-oriented explanatory covariate coefficients. 

In gradient-descent methods, the parameter vector is a column vector with a fixed number of real valued 

components, (the here denotes transpose), and is a smooth 

differentiable function of for all .(se 5) Thus, if an infectious disease vector ecologist assumes that on each 

step t, a new S. damnosum s.l. endemic transmission-oriented parameter for, example  may be 
observed in the residuals. These states might be successive states from an interaction with the riverine 

environment. Even though the exact, correct values,  could be quantitated for each , there would be  still 
a difficult problem because our function approximator may have limited resources and thus limited resolution. In 

particular, there is generally no that gets all the states, or even all the examples, exactly correct in a 
spatiotemporal onchocerciasis. endemic transmission-oriented model .  

We may assume that states appear in examples with the same distribution, , over which we are trying to 
minimize the MSE as given by in the spatiotemporal  onchocerciasis endemic transmission-oriented model .  A 
good strategy may then be to try to minimize error on the observed samples. A robust Gradient-descent methods 
would do this by adjusting the parameter vector in the endemic transmission model a by a small amount in the 

direction that would most reduce the error on that sample {e.g.,  = =

where is a positive step-size parameter, and , for any 

function , denotes the vector of partial derivatives, . This derivative vector would 

be then the gradient of with respect to .  in the onchocerciasis endemic transmission-oriented model .  This is 

kind of gradient descent because the overall step in is proportional to the negative gradient of the example's 
squared error. This may also  be the direction in which the error falls most rapidly in the endemic model.  

This research has revealed the values of specific calculus based functions for geomapping  onchocerciasis 
endemic trasnmission zones based on emperical datasets of field and remote sampled S. damnsoum s.l. riverine 
larval habitat data attributes and local neighboring village prevalance rates. For example,  generally, for  
spatiotemporal-sampled real-valued functions calculated from empirical seasonal datasets of georeferenced  S. 
damnosum s.l. explanatory predictor variables, functions holds if, and only if ,the absolute value of the slopes of all 
secant lines are bounded by K. The set of lines of slope K passing through a point on the seasonal S. damnosum s.l. 
graph of the function (e.g., sampled georeferenced capture point) then would form the tip of a circular cone. 
Thereafter, a function  could be classified as a  Lipschitz in an endemic transmission-oriented model but, the graph 
of the function must  lie completely outside of this cone. A function is called locally Lipschitz continuous if, for 
every x in X there exists a neighborhood U of x such that f restricted to U is Lipschitz continuous (Nielsen, 1897). 
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Equivalently, if X is a locally compact metric space in the geopredictive onchocerciasis endemic transmission-
oriented model , then ƒ would be locally Lipschitz if, and only if, it is Lipschitz continuous on every compact subset 
of X. In spaces that are not locally compact in a endemic transmission-oriented model this would be necessary but 
not a sufficient condition. More generally, a function f defined on X would be classified as be Hölder continuous or, 
to satisfy a Hölder condition of order *e.g., α > 0 on X+ in the spatiotemporal geopredictive.endemic transmission 

model, if there exists a constant M > 0 such that for all x and y in X in the 
residual forecasts.  

Importantly if there exists a K ≥ 1 with then f  in a 
onchocerciasis endemic transmission oriented georpedictive  model is bilipschitz A bilipschitz onchocerciasis 
related endemic transmission mapping is injective, and is in fact a homeomorphism onto its image. This  bilipschitz 
function in the endemic transmission model would be the same as an injective Lipschitz function whose inverse 
function is also Lipschitz. Additionally, the surjective bilipschitz functions generated from this model  would be 
isomorphic in metric spaces.  

 
Further, the inequality would only be trivially satisfied in a spatiotemporal geopredictive onchocerciasis 

endemic transmission  oriented model ArcGIS/SAS-based model at best especially if, x1 = x2. Otherwise, the vector 
ecologist is forced to equivalently define a function to be Lipschitz continuous but, this can only occur  in the 
endemic model forecasts if, and only if, there exists a constant K ≥ 0 in the empirical time series dataset such that, 

for all x1 ≠ x2, *e.g., .  A metric space then could be defined as an ordered pair 

where is a set and is a metric on , (i.e., a function such that for any , the 

following holds:     (non-negative), iff     (i.e., identity of indiscernibles), 

    (symmetry) and      (i.e., triangle inequality) . In a 
spatiotemporal onchocercisis endemic transmission-oriented model the first condition may then  follow from the 

any other three, since  .The function (i.e., distance function) 
would be the most important criteria for determining  and mapping onchocerciasis endemicity in ArcGIS. These 
methods are typically slower than gradient descent however they may aid in regressing ArcGIS Euclidean-distance 
based measurements for seasonally  geographically mapping  onchocerciasis endemicity   

Introductio In this research we used the Lerch transcendent to express the Dirichlet beta function[1.e.,  =

= ] in the geopredictive spatiotemporal onchocerciasis endemic transmission-

oriented model. In the future , a special case can be given by  (7,8), where is the 
polylogarithm. Special cases giving simple constants in a geopredictive endemic transmission-oriented model 

include = , = , = , = where 

is Catalan's constant, is Apéry's constant, and is the Glaisher-Kinkelin constant.(McCulloch and Searle, 2005). 

This predictive  endemic model outcome may provide  the integrals of the Fermi-Dirac distribution =

= where is the gamma function and is the 

polylogarithm and Bose-Einstein distribution = =  

Thereafter,  double integrals involving the Lerch transcendent could include 
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= = where  is the gamma 
function(Toe et al., 1997). These formulas led to a variety of special cases of unit square integrals in the predictive 
spatiotemporal S. damnosum s.l. endemic transmission-oriented model. The residuals were then used to evaluate 

Dirichlet L-series. In mathematics, a Dirichlet L-series is a function of the form where χ is a 
Dirichlet character and s  is a complex variable with real part greater than 1 (Jacob, et., 2012). By analytic 
continuation, this function may even be extended to a meromorphic function in a S. damnosum s.l. endemic 
transmission-oriented model on the whole complex Euclidean-distance based plane, (i.e., a Dirichlet L-function). 

n 
 In conclusion results from both a Poisson and a negative binomial regression (i.e., a Poisson random variable 

with a gamma distrusted mean) revealed that the village-level seasonal-sampled explanatory covariate coefficients 
were highly significant, but furnished virtually no predictive power. In other words, the sizes of the population 
denominators were sufficient to result in statistically significant relationships, while the detected relationships 
were inconsequential. Inclusion of indicator variables denoting the time sequence and the district geolocation 
spatial structure was then articulated with Thiessen polygons which also failed to reveal meaningful estimates. 
Unfortunately, the presence of additional noise in the data did not allow for forecasting the seasonal-sampled 
S.damnosum s.l data employing an eigendecomposition spatial filter algorithm. Thereafter, an ARIMA analysis of 
the sampled related time-series revealed a conspicuous but not very prominent first-order temporal 
autoregressive structure in the data. As such, a random effects term was specified with the monthly time series. 
This random intercept represented the combined effect of all omitted covariates that caused some of the 
georefernced  villages to be more prone to the onchocerciasis prevalence than other villages. The random effects 
term displayed no spatial autocorrelation, and failed to closely conform to a bell-shaped curve. The variance, 
however, implied a substantial variability in the prevalence of onchocerciasis across districts. The estimated model 
contained considerable overdispersion (i.e., excess Poisson variability).The following equation was then generated 
to forecast the expected value of the prevalence of malaria for district: prevalence =exp [-[-2.9147 + (random 
effect)i] .The goodness-of-fit feature implied that the random effects term can be used for forecasting purposes. 
The model however, also indicated the autoregressive residuals were less effective for forecasting purposes 
especially for a relatively lengthy time. Compilation of additional data can allow continual updating of the random 
effects term estimates, allowing  rolling  in new-data informed resulted to bolster the quality of the predictions for 
future time-series dependent S. damnosum s.l. -related  seasonal modeling efforts. The asymptotic distribution of 
the resulting residual adjusted predictor error autocovariate uncertainty coefficients were then established while 
estimates of the asymptotic variance lead to the construction of approximate confidence intervals for accurately 
targeting productive S. damnosum s.l. habitats based on spatiotemporal field-sampled count data. Varying and 
constant coefficient regression models, , sub-meter resolution satellite imagery, a robust residual intra-cluster 
diagnostic test, eigendecomposition spatial filter algorithms, and Bayesian matrices could enable accurate 
autoregressive estimation of latent uncertainty affects and other residual error probabilities (i.e. 
heteroskedasticity) for testing correlations between georeferenced S. damnosum s.l. riverine larval habitat 
estimators. 
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