Some Refinement of the Triangle Inequality in Quasi 2-normed spaces

Authors

  • Majid Abrishami-Moghaddam Department of Mathematics Birjand Branch, Islamic Azad University, Birjand, IRAN
  • Tahereh Sistani Department of Mathematics Kerman Branch, Islamic Azad University, Kerman, IRAN

Keywords:

triangle inequality, quasi-2-normed space, quasi-(2,p)-normed space, Dunkl-Williames inequality

Abstract

In this paper we establish a generalization of the triangle inequity and the Dunkl-Williams inequality in quasi 2-normed linear spaces.

References

Y.J. Cho, S.S. Dragomir, A. White and S.S. Kim, Some inequalities in 2-inner

product spaces, Demonstratio Math. 32(1999), 485-493.

S.S. Dragomir, Y.J. Cho, S.M. Kang, S.S. Kim and J. S. Jung, Some Gruss

type inequalities in 2-inner product Spaces and applications for determinantal

integral inequalities, Panamer. math. J. 15(2005), 79-94.

C.F. Dunkl and K.S. Williams, A simple norm inequality, Amer. Math. Monthly

(1964), 53-54.

R.W. Freese, Y.J. Cho, Geometry of linear 2-normed spaces, Nova science,

Hauppauge, NY, USA, 2001. 256-260.

Gahler, S., Linear 2-normierte Raume, Math. Nachr, 28 (1965), 1-45.

M. Kato, K.S. Saito, T. Tamura, Sharp triangle inequality and its reverse in

Banach spaces, Math. Inequal. Appl. 10(2) (2007) 451-460.

S.S. Kim, S.S. Dragomir, A. White and Y.J. Cho, On the Gruss type inequality

in 2-inner product spaces and applications, PanAmerican Math. J., 11(2001),

-97.

W.A. Kirk and M.F. Smiley, Another characterization of inner product spaces,

Amer. Math. Monthly 71 (1964), 890-891.

L. Maligranda, Simple norm inequalities, Amer. Math. Monthly 113 (2006),

-260.

L. Maligranda, Some remarks on the triangele inequality for normes, Banach

J. Math. Anal. 2 (2008), no. 2, 31-41

P.R. Mercer, The Dunkl-Williams inequality in an inner product spaces, Math.

Inequal. Appl. 10 (2007), No. 2, 447-450.

C. Park, Generalized quasi-Banach spaces and (2; p)normed spaces, J. Chung.

Math. Soc, 19,(2) (2006), 197-206.

J. Pecaric, R. Rajic, The DunklWilliams inequality with n elements in normed

linear spaces, Math. Inequal. Appl.10(2) (2007) 461-470.

C. Wu and K. Li, On the triangel inequality in quasi-Banach spaces, J. Inequal.

pure and appl. Math, 9(2)(2008) 1-9.

Published

2020-09-06

How to Cite

Abrishami-Moghaddam, M. ., & Sistani, T. . (2020). Some Refinement of the Triangle Inequality in Quasi 2-normed spaces. Scientific Journal of Pure and Applied Sciences, 3(7). Retrieved from http://sjournals.com/index.php/sjpas/article/view/821

Issue

Section

Mathematics