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A B S T R A C T 

 

The mixture models were firstly studied by Pearson in 1894. 
These models are strong tools, through which the complicated 
systems can be analyzed in a wide range of disciplines such as As-
tronomy, Economics, Mechanics, etc. although the structure of these 
models is apparently simple, it is very complicated to obtain 
maximum likelihood estimators and Bayesian ones in particular and it 
needs to be approximated in most cases. In this paper, we apply the 
Gibbs Sampling in order to approximate the Bayesian Estimator in 
Mixture models, present the Gibbs algorithms for the family of 
exponential distributions and finally, we would show the 
disadvantage of this algorithm through an example. 

© 2014 Sjournals. All rights reserved. 

1. Introduction 

Assume that a population includes a number of sub-populations. Through considering a common distribution 
for all of these subpopulations, they would be indexed due to one or more parameters such as average, Variance, 
etc. if we select a sample from this general population, it can be chosen from each subpopulation. Assume that we 
have k subpopulations which are represented as A1, j = 1... K. also assume that B is the represents the event of 
choosing a sample from this general population. According to the Law of total probability: 

 

              
 
          

 
           (1) 
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In the representation above, P (  ) is the possibility of choosing each of the subpopulations and P      the 

possibility of the considered sample being from j population. In fact, we firstly choose one of the sub-population 
with the probability of P (  ), and then, we take a sub-sample from this subpopulation. If B is the event of X = x 

random variant and P (  ) = P (J = j) where J is the index of J subpopulation: 

P(X = x) =         
   .(P(X = x|J = j) 

 
The rewritten form of the relation above is: 

fx(x) =        
 
              

This model is called Finite Mixture Model in which    is the probability of the sairiple being from j 

subpopulation and fj(x) represents the density function for this subpopulation. If the number of the components of 
(k) model is infinite, then it is called au Infinite Mixture Model. Such models were firstly studied by Pearson in 
1894. They have performed strong tools, through which the complicated systems can be analyzed in a wide range 
of disciplines such as Astronomy, Economics, Mechanics, etc. 

In this paper, we assume that each of the components (fj (.)) is characterized by a vector of   , the 

corresponding parameter: 

fx(x) =           
 
               

This representation is called the density function of the parametric mixture model. The parameter space is 

            
Although this definition of mixture model is completely simple and rather initial, its estimations of maximum 

likelihood (if there is any) or Bayesian estimators are not easy. Assume that, x = (x1 …. xn      
is the iid observation we have from the model three with the parameters: 
p= (p1,…,pk)            ,              
The complete (accurate) calculation of posterior distribution and representation of average posterior in 

particular in a clear forum requires the expansion of the likelihood function: 

                       

 

   

 

   

             

Proportional to the total rate of kn . Except for several special conditions, the calculation of this likelihood 
function is not possible for a large number of observations. This substantial computational problem causes us to 
apply approximate algorithm such as MCMC for the model approximation. 

If the statistical inference merely aims to estimate the parameters, the case is called the Parameter Es-
timation Problem. The number of the components of the model might be unknown, if so the parametric spatial 
dimension would he indeterminate as well. In such a case, the statistical inference on the model is much harder 
compared to the previous condition. The estimation of the number of these components is called Model Learning 
process. Some times the number of components can he specified previously and the inference mainly aims to 
allocate each of the samples to each subpopulation. This kind of inference is called Clustering. 

2. The structure of the latent variable 

Considering the law of total probability, all of the models can be shown as: 

                   

This method is known as marginalization process. In this representation, x is the observation variable and z is 
called the latent variable. Note that this is a continuous representation of the law of total probability. Applying the 
conjugation (completion) of the variant X, and the latent variable, z , we extend the missing data, zi for each xi 
observation: 

P (zj=j) =pj         xi|zi=z f (x|  ) j=1,..., k i=1,...,m, 

zi are also called the label variables for their value specifies that the related xj has. Come from which 
subpopulation. The (x, z) pair is called a complete data, because having this pair enables us to tell that each variant 
belongs to which component of the mixed distribution. 
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As it was mentioned above, the likelihood function includes kn terms. Theoretically, this means that the zi 
latent variable is considered in calculation of likelihood function along with all of its values. Since the likelihood 
function of a given value ( , p) can be calculated from the nk stage of the operation, the computational problems 
derived by extended version of the 4 equation, prevent the performance of an accurate classic and Bayesian 
extension. 

According to the prior ‘ ( ,p) for the parametric vector of ( ,p), the posterior distribution would be given: 

                             

 

   

 

   

 

The right side of the equation above has an operational stage of nk. Like the likelihood function, obtaining an 
intuitive posterior distribution is not possible without the extension of the right side of the equation. 

The z = (z1,. . . , zn) is considered as the latent variable vector. zi i = 1, . . . , n can have each of the k various 
values (i.e. each observation can belong to any of the subpopulations). This vector is also known as allocation 
vector. The set of all kn allocations of this vector is represented by x. The following partition has been considered 
for the vector (n1,. . . , nk) in which nj is the share of the j subpopulation from the sample: 

                      

 

   

            

 

   

  

The j index in the mentioned partition indexes the different states of the vector (n1,. . . , nk). The total 
number of these states is equal to the number of the analytical non-negative right answers, n1, proportional to k 
parts which require the condition of n1 + ... + nk = n. this number is equal to: 

   
     

 
  

Therefore, j = 1,…,r would change. Association of j with an ideal combination of the vector (n1 . . . , nk) call be 
performed fully arbitrary. What is important is that the value of j can only be corresponding to one vector. 

One methods to correspond the value of j and the vector (n1. . . , nk) is to consider time alphabetic order on 
this vector. This is also known as an arrangement according to the dictionary. 

For instance, time vector (a2, b2, c2) is considered bigger than i (a1, b1, c1), whenever on of time following 
three conditions is required: 

1 a1 <a2 
2 if  a1 = a2 then b1 < b2 
3 if a1 = a2, b1 = b2 then c1 < c2 
Thus, all of the different partitions of z can he represented as: 

     

 

   

 

Note that the one-to-one correspondence between the different values of j and the vector (n1. . . , nk) would 
not be transferred to the vector z, so there can be more than one z vector for each j value. 

Applying these partitions, the posterior distribution can be rewritten as: 
                          

    
 
    (5) 

Where W(z) represents the posterior possibility of the z vector. 
(x,z) is the complete data, and            is its posterior distribution. Considering the full likelihood function, 

this full posterior distribution is obtained: 

                      

 

   

              

 

   

 

Considering the expected value of equation 5, the posterior estimator which indicates the Bayes estimator of 
( ,p) is: 
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Inferentially, it is very important to breakdown the equation 5. This indicates that the posterior distribution 
would firstly consider all of the possible z allocations of the date, then, it attributes the posterior possibility of W(z) 
to each of then amid finally, the posterior distribution of ‘π(       ) would be grounded based on this allocation. 

3. The approximate inference for mixture models 

In this part, the approximate inference for the mixture models and its problems would be investigated. In 
order to perform an approximate inference the Gibbs algorithm would he applied. 

3.1. The gibbs algorithm for mixture models 

Gibbs sampling is one of the more usable methods in Bayesian inference of the mixture models. For this type 
of sampling take advantages of the structure of latent data. Gibbs sampling for the mixture models is based on a 
continuous simulation of z, p,   distributions providing for one another and the data. I.e. we first obtain the total 
conditional distributions of parameters and the latent variable, z, and then, we perform the continuous sampling 
from them. If prior p and   are independemit, the full conditional distributions of p and   are: 

                
                   

This algorithm can be coded in algorithm 1. 
The investigation of the convergence of this algorithm is not easy in spite of its apparent simplicity. In fact, 

when according to Ergodic theory, the chain is geometrically uniform, aim increase iii its dimension resulted by the 
stage of adding z variable, can cause substantial problems for the chain convergence. One of time natural 
characteristics of Gibbs algorithm due to time mixture models is that the chain might be place in a situation that its 
produced values convene around a local maximum. In order to get out such situations a large number of 
repetitions are needed. This situation is called a trap. 

If the conjugate prior is applied for Pjs , it would be very easy to sample them. On the contrary, simulation of 
  s extremnely depends on sampling distribution of f (.|  ) amid the prior  (.). 

The marginal distribution of zis is a polynomial one which belongs to the exponential family of distributions. 
Therefore, we can apply conjugate prior which means time Dirichlet distribution. 

While sampling, the Gibbs algorithm for the mixture models distribution belongs to the exponential 
     Algorithm 1 mixture gibbs sampler 

(0) Initialization: Choose p(0) and      arbitrarily. 
(1) Iteration t :for t = 1,2.... 

(1.1) generate   
   

 such that: 

    
   

=j|  
     

   
     

        
            

     
) 

(1.2) Generate p(t) according to           

(1.3) Generate       according to              

family and the conjugate prior would be in form of the algorithm 2: 

Algorithm 2 mean mixture gibbs sampler. 

(0) Initialization: Choose p(0) and      arbitrarily. 
(1) Iteration t : for t = 1, 2,… 

(1.1) Generate   
   

from: 

    
   

)=j|  
     

   
     

        
            

     
) 

(1.2) compute 

  
   

    
  
   

 

   

           
   

    
  
   

 

   

        

(1.3) Generate p(t) from: 
                  

(1.4) Generate for j = 1,. . . , k according to: 
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Gibbs algorithm would be operated in the following example, assuming that the value of p parameter is 
determinate. The example shows that Gibbs algorithm is not adequately capable of traversing along the 
parametric space and it might even he trapped in very large number of repetitions in a parametric area. 

Example 1 assume that (x1,. . . , xn,) is a random sample of the following mixture distribution: 
                      

Considering the normal independent prior distributions, the posterior distributions for    and,    are 
calculated: 

  
         

   
 

 

   
  

 

  
             

     
 

 

     
  

 
Thus ‘we can sample the posterior distributions applying algorithm 3. 
Algorithm 3 Mixture Gibbs Sampler for example 3 

 (0) Initialization: choose   
   

and   
   

 

 (1) Step t: fort=1,2.... 

(1.1) Generate   
   

from: 

               
 

 
      

     
 
 
  

                  
 

 
      

     
 
 
  

(1.2) compute: 

     
  
   

 

   

            
          

  
   

  

 

   

       

(1.3) Generate   
   

from 

  
         

   
 

 

   
  

(1.4) Generate (t) from 

  
             

     
 

 

     
  

 

 

Fig. 1. Initialized at random. 
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The following figures illustrate the behavior of this algorithm applying n = 500 samples when,    = 0 and   = 
2.5. Gibbs algorithm have been repeated 10000 times arid the produced models for (  /  ) are plotted on the 
posterior logarithm balance graph. Figure 1 in which the algorithm has been converged to the real value of p,    
and   , shows the dot algorit/urru near the exponent, whereas time figure is the first point near the wrong 
exponent. These two figures clearly indicate that Gibbs algorithm is not able to get out of local exponents. 

4. Conclusion 

In this paper, the Gibbs algorithm has been applied in order to approximate Bayesian estimators in mixture 
models and its disadvantage due to being incapable of getting out of trap conditions was clarified. In order to solve 
this problem, two suggestions are presented: using other MCMC algorithms, and, applying artificial limitations. 
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