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A B S T R A C T 

 

This paper deals with inference for the stress-strength reliability 

)<(= XYPR when X and Y  are two independent power 

distribution. The problem of hypothesis testing and interval 
estimation of the reliability parameter in a stress-strength model is 
considered. Test and interval estimation procedures based on the 
generalized variable approach are given. Statistical properties of the 
generalized variable approach and an asymptotic method are 
evaluated by Monte Carlo simulation. 

© 2014 Sjournals. All rights reserved. 

1. Introduction 

In reliability contexts, inference about )<(= XYPR , where  X  and Y are independent random variables, 

are a subject of interest. In mechanical reliability of a system, if  X  is the strength of a component which is subject 

to stress  X , then R  
is a measure of system reliability. For a particular situation, consider Y  as the pressure of a 

chamber generated by ignition of a solid propellant and X  as the strength of the chamber. Then R represents the 

probability of successful firing of the engine. In this context, R can be considered as a measure of system 

performance and it is naturally arise in electrical and electronic systems. It may be mentioned that R  is of greater 
interest than just reliability since it provides a general measure of the difference between two populations and has 

applications in many area. For example, if X  is the response for a control group, and Y  refers to a treatment 
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group, R  is a measure of the effect of the treatment. Also, it may be mentioned that R  equals the area under the 
receiver operating characteristic (ROC) curve for diagnostic test or biomarkers with continuous outcome. The ROC 
curve is widely used, in biological, medical and health service research, to evaluate the ability of diagnostic tests or 
bio-markers to distinguish between two groups of subjects, usually non-diseased and diseased subjects. For more 

details see Kotz et al. (2003). Many authors have studied the stress-strength parameter R . Among them,Ahmad et 
al.(1997), Awad et al.(1981), Baklizi and El-Masri (2004), Kundu and Gupta(2005, 2006), Adimari and Chiogna 
(2006), Baklizi (2008), Raqab et al. (2008) and Asgharzadeh et al. (2011). 

     The power distribution is one of the most widely used distributions in the reliability and survival studies. In 

this article, we want to develop inferential procedures about the reliability parameter )<(= XYPR , where 

X  and Y  are independent power distribution random variables. The power distribution denoted by ),(  b

has probability density function (PDF) 
 

 Rx,<x<b,xδ)=δbb,f(x; δδ  01
,     (1) 

and the cumulative distribution function (cdf)  

 ,<<0,=),;( bx
b

x
bxF



 







 (2) 

Here   is the shape parameter and b is the scale parameter. 

This article is organized as follows. In section 2, we calculate parameter reliability in the power distribution. In 

section 3, we present the MLE of R . In section 4, we present the asymptotic results given in Kotz et al.(2003). In 
section 5, we explain first the method of constructing generalized variables for the parameters of a power 
distribution. Using these generalized variables, in section 6, we construct a generalized variable for the reliability 

parameter R  and outline the procedures for constracting confidence limits and hypothesis testing about R . The 
different proposed methods have been compared using Monte Carlo simulations and their results have been 
reported in Section 7. Finally, we conclude the paper in Section 8. 

2. Calculate the R  

Let 
1 1~ ( , )X b   and 

2 2~ ( , )Y b  , where 1 , 2 are known and 1b , 2b are unknown. In order to evaluate 

the probability )<( XYP , since  
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If 21 bb  , Then R  is given by  
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Thus, the reliability parameter R  can be expressed as:  
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where I(.) is the indicator function.  

If 21 bb  , then the reliability parameter R simplifies to 
21

1






, and exact confidence limits for R  can be 

obtained using some conventional approaches. If 21 bb  , then the form for R , as shown in (3), is quite complex, 

and only large sample approach is available. 

3. Estimation of R  

If nXX ,...,1  be a sample of observations from the power distribution with pdf in (1), the MLE’s of b and   

are given by  
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Upon using (4), we immediately have the MLE’s of b and   as follows:  
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where )(nX  is the maximum of the iX ’s. It is known that b̂ and ̂ are independent with  
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Let X  be the power random variable with pdf ),;( 11 bxf  and Y  be the power random variable with pdf 

),;( 21 byf , where the pdf’s are as defined in (1). Assume that X  and Y are independent. Let nXX ,...,1  be a 

sample of observations on X  and mYY ,...,1  be a sample of observations on Y . Specifically, The MLE’s are  
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 The MLE of the reliability parameter R  can be obtained by replacing the parameters 1b , 2b , 1  and 2  in 

(3) by their MLE’s. That is, the MLE of R  is given by  
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4. An asymptotic approach   

An asymptotic confidence interval for R  is given in kotz et al (2003). This confidence interval is based on an 

asymptotic distribution of the MLE of R . we shall now present an asymptotic mean squared error of R̂  given in 
kotz et al (2003).We have 
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where i=1, if j=2 and i=2, if j=1. Using these terms, an estimate of asymptotic MSE of R̂ given by 
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Using this estimator, for large n+m, we have the asymptotic distribution of 
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 to be standard 

normal. A 100(1- )% lower limit for R based on the above asymptotic distribution is given  
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Where pZ denotes the p-th quantile of the standard normal distribution. 

5. Generalized variables for b and   

The reliability parameter in (3) is a function of both b’s and  ’s. So we develop first generalized variables for 

b and   for the one-sample case. Even though it is not our primary interest, knowing the results of the one-

sample case will make it easier to understand the approach and results for the stress-strength reliability in section 
6. 

5.1. A Generalized variable for b  

Let 0b̂  and 0̂  be observed values of b̂ and ̂  respectively. Based on the above distributional results of the 

MLE’s, a generalized pivot variable for b can be constructed as follows:  
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To get the last step, we used the distributional results in (6). The generalized test variable for testing 
hypothesis about b is given by 
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In general, a generalized pivot variable should satisfy two properties. More details can be found in 

Weerahandi(1995b). Thus, we showed that bG  is a bona fide generalized pivot variable for constructing 

confidence limits for b, and 
t

bG is a valid generalized test variable for hypothesis testing about b. For example, the 

100 -th percentile of 
bG , that is: 
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 where pnmF ,,  denotes the 100p-th percentile of the F distribution with degrees of freedoms m and n, is a 

100(1- )% lower confidence limit for b. If one is interested in testing  
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bG is stochastically decreasing in b, the generalized p-value is given by  
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Using (13), and after some simplification, we see that the above p-value can be expressed as  
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The test or interval estimation of b based on our generalized variable approach are the same as the usual 
exact ones (see lawless 1982, p.128). 

 

 5.2. A Generalized Variable for   

A generalized variable for   is given by  
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And the generalized test variable based on G  is given by 
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It is easy to see that the generalized pivot variable and the generalized test variable and the generalized test 
variable satisfy the properties given earlier. 
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6. Generalized confidence limits for R  

The generalized variable for R  can be obtained by replacing the parameters by their generalized variables. 

The reliability parameter R  simplifies to 
21
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 when 21 = bb . Denoting the resulting generalized variable by 

RG , we have  
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here  ioiob ̂,ˆ  is an observed value of   2,1,ˆ,ˆ ib ii  , and 121 ,, WQQ  and 2W  are independent random 

variables with 
2

(2)iQ  and 1,2.=,, 2

)(22

2

)(21 iww mn    The generalized test variable for R  is given by 

RGG R

t

R = . 

It is easy to check that the generalized pivot variable RG  satisfies the two properties given in section. Monte 

Carlo method given in algorithm 1, can be used to find confidence limits for R  or to find the generalized p-value 

for hypothesis testing about R . 
 
Algorithm 1:   

1.  For a given data set, compute the MLEs 20102010
ˆ,ˆ,ˆ,ˆ bb using the formulas in (3) for .1,= mi  

2.  Generate     . , , , 2

22

2

21

2

22

2

21 mn WWQQ    

3.  Compute 
2121

,,,  GGGG bb and RG . 

The 100 -th percentile of the generated RG ’s is a 1-  lower limit for the reliability parameter R. If we are 

interested in testing  

,>:.: 0100 RRHvsRRH   

Where 0R  is a specified value, then the generalized p-value is the proportion of the RG ’s that are less than 

0R
. 

7. Simulation study  

In this section we compare the performance of the two methods through a simulation study. We assume that 

1=2.5,= 22 b  to compute the coverage probabilities. We used different sets of parameter values 

1,2,3,5)=( 1  and 4.5)4,3.5,3,1,=( 1b  mainly to compare the coverage probabilities and expected lengths 

of 95% lower confidence limits for R. The simulation is carried out as follows. For a given  1 1, , ,n b m , we first 

generated 2000
,

10 10 20 20( , , , )b b s  using the distributional results in (5). For each simulated set
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10 10 20 20( , , , )b b  , we used algorithm1with 3000=m  to find the 95% lower limit for R . The proportion of the 

2000 lower limits that are below the value of R  is a Monte Carlo estimate of the coverage probability. The 
coverage probabilities of the asymptotic limit in (6) were estimated using simulation consisting of 10000 runs. 

In Tables 1and 2, we present coverage probabilities of asymptotic limits and generalized confidence limits for 
sample n=m=50 and n=m=100. We chose large sample size because the asymptotic limits are valid only for large 
samples. In Table 3, we give the coverage probabilities of the generalized limits for small samples. Furthermore, to 
understand the closeness of the lower confidence limits to the value of the reliability parameter, we present 

estimates of the expectation of the lower limits and the value R  for each parameter and sample size 
configurations. Correspond to each different sets of parameter values, the first row represents the Coverage 
probabilities of generalized limit, and the corresponding expected lengths are reported within brackets. Similarly, 

the second line represents the results corresponding to asymptotic limit of R . Some of the points are quite clear 
from Tables 1,2 and 3. 

• We observe from Table 2 that, even for large samples, the coverage probabilities of the asymptotic 

approach are in general smaller than the nominal level 0.95, and for fixed 1b , as 1  increases in most of cases the 

coverage probabilities of the asymptotic limits increase. 
• The coverage probabilities of the generalized confidence limits are in general either close to or slightly more 

than the nominal level 0.95. Comparison of values for n=10 and m=15(in Table 3) and those for n=m=50 (in Table 
1) suggests that the coverage probabilities approach nominal level as sample sizes increase. Thus, we see that the 
generalized inference is in general conservative, and its accuracy increases as the sample sizes increase. 

• Comparison between the estimates of the expectation of the lower limits and the values of R  indicates 

that the lower limits are expected to be fairly close to R  even though the generalized estimation procedures is 
slightly conservative. Furthermore, for fixed confidence level, the lower limits tend to increase as the sample sizes 

increase. For example, when n=10 and m=15 and 0.80=2,=3,= 11 Rb   and the lower limit is 0.62 (see Table 

3); at the same parameter configuration, the lower limit is 0.73 when n=m= 50 (see Table 1) and is 0.75 when 
n=m= 100 (see Table 2). Thus, the lower confidence limit is expected to increase with increasing sample sizes, 
which is a desirable property. 

• The size properties of the generalized test can be understood from the above coverage properties. In 
particular, the sizes of the test should be close to or less than the nominal level, and they are expected to be close 
to the nominal level for large samples.  

 
Table 1 
Coverage probabilities (CP) and expected lengths (EL) of 95% lower confidence limits for R when n=m=50 and 

1=2.5,= 22 b
.  
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Table 2 

Coverage probabilities (CP) and expected lengths (EL) of 95% lower confidence limits for R when n=m=100 and 

1=2.5,= 22 b
.    

 
 
Table 3 
Coverage probabilities (CP) and expected lengths (EL) of 95% lower confidence limits for R when n=10, m=15 and 

1=2.5,= 22 b
.  

 

8. Conclusions 

In this paper we have considered the classical inference procedure for the stress-strength parameter of 
power distribution. Test and interval estimation procedures based on the generalized variable approach are given. 
Statistical properties of the generalized variable approach and an asymptotic method are evaluated by Monte 
Carlo simulation. Simulation studies show that the proposed generalized variable approach is satisfactory for 
practical applications while the asymptotic approach is not satisfactory even for large samples. 
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