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1. Introduction

Throughout this paper, R denotes a commutative Noetherian ring with unity and d will be a non-negative
integer. For R-modules M and N, we define

1) Lg(M) ={m € M: dim Rm < d}
lim
2 Hi (M) = > Exth (X2,M) foralli=0
) ah dim=<d R (GM)
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lim
_) R
3 Ly(M,N) = Homg (—,N
) a(M, N) dim%gd R (5 N)
lim
i = i (M .
4) HL (M, N) _dimB; Exth (5 N) foralli>0
a

It can be shown easily that Ly(—) and Lq(M, —) are additive covariant R- linear functors on the category of R-
modules which are left exact, too. For R- modules M and N, we easily have H} (M) = Ri(Ld(M)) and H{(M,N) =
Ri(Lg(M,N)) foralli=> 0.

Using the results in [7, Theorem 2.75], it can be shown easily that

Lg(M,N) = Ly(Homg(M, N)),

Moreover, if M be finitely generated R- module, then by [5, Satz 3]

Lg(M,N) = Homg(M, Lg(N)).

2. Main results

the functors ,In the sectionD4(—) and D4(M, —) where ,are introduced and the realted theorems are proven M
is an R- module.

Defintion 2.1. For any R- module M andN, we define
lim

—_—
i Dq(M) = Homg (a, M
) a(M) dim® < d r (6, M)
lim
—
ii D4(M,N) = Homg (aM, N
) G = i g Hom G4

Dg4(—) and D4(M, —) are additive covariant R- linear functors which are left exact too.

Lemma 2.2. Let M be an R- module. Then the following sequence is exact:
0 - Lg(M) > M - Dg(M) » Hyg(M) - 0
also, foranyi > 1,Ri(Dg(M)) = HL1(M).
proof: Let a and b be two ideals of R such that a € b, dim g < dand dim % <d.
So, there is the following commutative diagram of R- modules and R- homomorphisms with exact rows:

0 a R £ 0
0 b R & 0

Thus, we get the following commutative diagrams of R- modules and R- homomorphisms with exact
rows:

0—— HomR("—j, M) ——= Homp(R, M) —— Hompg(b, M) — Ext}q(%., M)——=0

|

0—— Homg(‘]—:. M) —— Hompg(R, M) — Hompg(a, M) — Extll,q(% M)——=0

and foranyi=>1,
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0 — Extly(b, M) — Extiy (£, M) — 0

l

0 — Exty(a, M) — Extii ' (£, M) — 0

Now, by applying direct limit in above commutative diagrams, the result follows.

Corollary 2.3. If R is the quotient of a catenary, biequidimensional ring, then for any p € Spec(R)
Da(M), = D_ . r(M,).
P

Proof. Using [1, Lemmal], Hél(M)p = H;_dimB(Mp) forall i = 0. Now, by commutative diagram with exact
sequence '
00— Ld[ﬁ-f)p M, Dd(ﬂ-f)p Hfi(ﬂ-f)p ——0
j% J J .
0——- Ld_dim% (Mrp) — M, — Dd_dim% (ﬂ.[p) — H;idimﬂ (ﬂ-'[p) —0

and five lemma, the proofis complete.

Theorem 2.4. If E is an injective R-module, then L4 (E) is also an injective

R-module.

Proof. Let ] be an ideal of R and let h:] = Lgy(E) be an R-homomorphism. We show that 3x € L4(E)
such that h(j) =jx forallj € ]J. Since E is injective, 3 e € E such that h(j) =je for all j € ]J. Now let

] =<ji,.--,jn > -Thusfor 1 < i < n, there exists ideal a; Such that dimg < d andg;h(j;) = 0. Puta = []L, q;.

Then dim% <d and ah(J) = 0. Since h(J) < Re, using Artin-Rees lemma, 3c € N such that for all integers
m =,
a™en h(]) =a™ ¢(a“"en h())).
Now for m = ¢ + 1, we have a*le n h(J) € ah(]) = 0.
Consequently the map h: a** + ] » L4(E) with h(r + s) = se,
for all r € a°*! and s €] is a homomorphism of R-module. Since E is injective, 3x € E such that
h(r) = rxforallr € a**! + . Itis easy to see that forallr € a®*',x € Lq(E) and the proof is complete.

Corollary 2.5. Let M, N be two R-modules and let E* be an injective resolution of N. If Mis finitely
generated R- module and L4(N) = N, then
i) H{(N) = 0 foralli > 1.
ii) H}(M,N) = Exth(M,N) foralli> 0.
Proof. Using Theorem 2.2, we can construct an injective resolution
0> N>E°> E! ...
for N such that Ly (E) = E' Foralli > 0. Now,

. . i _ ker (El-El+T) _
i) Foreachi > 1, Hy(N) = T =

ii) Using [Theorem 2.75], for each i > 0, we have
Hi(M,N) = Hi(Lq(M, E*)) = H(Homg(M, L4(E")))
= H'(Homg(M, Lq(E")) = Exth(M,N).

Corollary 2.6. Let M be an R- module. Then the following statements hold:
i) If L4(M) = M then D4(M) = 0. Moreover, for any R- module X and Y,
Dg(Ha(X)) = Dg(Ha(X, Y)) = 0.

il) Dy (M) = Dy(M/Lg(M)).

lll) Dd(M) = Dd(Dd(M))
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iv) La(Dg(M)) = 0 = H}( Dy(M)).
v) Hy(M) = Hj(Dg(M)) foralli=> 2.
Proof. i) By corollary 2.4, Hj(M) = 0. So, by lemma 2.2, the following sequence
0- Lg(M)-» M- Dy(M) - 0
is exact. Now, since M = Ly(M), then D4(M) = 0.
For the next part, it is enough to show that Ld(Hd(X)) = H{(X) and Ld(Hd(X Y)) = H{(X,Y). Here, we
show that only the second part. Clearly, Lq(H}(X,Y)) € Hd(X Y). Now, let x € Hi(X,Y). So, conc1der1ng the

definition of direct limit, there exists ideal a of R with dlm; < d and R- homomorphism ¢,: ExtR(;, M) -
HL(X,Y) such that ¢,(y) =x for some y € Exti{(g, M). Thus, ax=0 and so x € Lg(H}(X,Y)). Then
La(Hy (X, Y)) = Hg(X, ).

ii) Using the following exact sequence and part i, the result is complete.

iii) Using lemma 2.2 and part i, the result is complet.
iv) By putting D4(M) instead of M in lemma 2.2 and using part iii, the result is complete.
v) Considering the exact sequence

0- Li(M)-» M-

- 0,
Lq(M)

we get the following sequence
. . .M
Ha(La(M)) > Hyg(M) » HyG—) = Hg (La(M)).
La(M)
Using corollary 2.5 (i), H{(M) = Hfj( e
Now, From the following exact sequence

M
0> ——— - D4(M) » HY(M) - 0,
L. (M) aM) aM)

) foralli > 1.

The result is complete.

Theorem 2.7. Let M and N be two R- modules. Then
(Ri(Da(M, =) = (lim_Exth(aM, ))iso
- dlmESd
as connected sequence of functors.
Proof.Let T = Dg(M, =) and T! = 11m _lim Extg(aM,—),foralli > 0.
d1m—<d
Since direct limit is an exact functor, then {T!} is an strongly connected sequence of functors. But T® and

T are naturally equivalent and for any injective module E, T!(E) = 0 for alli > 1. Thus the result follows from
[3, Theorem 1.3.5].

Corollary 2.8. Let M, N be two R-modules. If Dg(M, —) Is exact functor then, Hj(M,N) = Extk(M,N) for
alli = 2.
proof Since D4(M,—)is exact functor, then R!(D4(M,N)) = 0 foralli > 1. Thus, using theorem 2.7,
11m Exth(aM,N) = 0 foralli > 1.
dlm—<d

From the short exact sequence
M
0O-»>-aM-> M->—- 0,
aM
we get the following exact sequence

Exth (aM,N) - Ext1+1( ,N) - Exti'(M,N) — Exti(aM,N).

Therefore,
lim_ Extk(aM,N) > _lim _Ext?(=-,N)
dlm;sd dlm:Sd
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- _lim Exti'(M,N) - _lim Exti(aM,N)
R R
dlmzsd dlm;id

is exact sequence. Thus,

. M .
lim Exth? (a—M,N) lim Exti*(M,N) foralli=> 1.

dlmBSd dim—=d
a a

Then H{(M,N) = Exth(M,N) foralli > 2.

IR

Proposition 2.9. Let M and N be two R- modules. Then, there exists long exact sequence:
0 - Lg(M,N) - Homg(M,N) - D4(M,N) — Hi(M,N)
- Exti(M,N) » RY(Dg(M,N)) - H3(M,N) - ...
proof. Let a is an ideal of R with dim% < d. From the short exact sequence

M
0> aM-> M-> —->0
aM

we get the following long exact sequence
0- HomR(%,N) - Homg(M, N) - Homg(aM, N) - Exth(%,N) - ...
Now, by applying the functor _lim and theorem 2.7, the result is complete.
dlmBSd
Corollary 2.10. If M be projective R- module or N be injective R- module, then
0 - Lg(M,N) » Homg(M,N) » D4g(M,N) - HY(M,N) - 0

[s exact sequence.
Proof. This is easy.
Corollary 2.11. Let R be a quotient of a catenary, biequidimensional ring and M be finitely generated R-
module. If M be projective R- module or N be injective R- module, then for any p € Spec(R)
Dy(M,N), = Dd—dim%(Mp’ N,).

proof. Similar proof of corollaty 2.3 and also by [1, Lemma], the result is complete.
Corollary 2.12. Let M be a finitely generated R- module. then for any R- module N,
0 - Lgy(M,N) » Homg(M,N) > Dg(Homg(M,N)) » Hi(Homg(M,N)) > 0
is exact sequence.
Proof. Since Lgy(M, N) = Ly(Homgz(M, N)), thus using lemma 2.2, the result is complete.

Corollary 2.13. Let M and N be two R- modules such that p = pdg(M). Then for alli > p,
RI-1(Dg(M,N)) = Hi(M,N).
proof. Since Extk (M, N) = 0 for any i > p, then using proposision 2.9, the resultis complete.
O
Corollary 2.14. Let M and N be two R- modules such that M is finitely generated and Ly(N) = N. Then
Dg(M,N) = 0. Moreover, for any R- module X and i > 0, Dg(M, H; (X)) = 0.
proof. Using of corollary 2.5, proposition 2.9 and also
Lg(M, N) = Homg (M, N),
The claim is held. For the second part, it can be easily seen that
La(H} (X)) = HL(X) foralli > 0.

Theorem 2.15. Let M and N be two R- modules. Then the following statements hold:
i) If M is finitely generated R- module, then
N
Da(M,N) = Dg(M,D4(N)) = Dg(M, Ld(N))'
ii) If Extk (M, N) = 0, then
Dd(Dd(M, N)) = Dd(HomR(M, N)) and also, for any i > 1,

Hi(Dg(M,N)) = H}(Homg(M,N)).

iii) If M is a flat R- module, then,
Da(D4(M,N) = Dy(M,N),
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And also _
La(DgM,N)) = Hj(Dq(M,N)) = 0.
Proof. i) Concidering the short exact sequence
M
0-Ly(M M- ——- 0,
- Lg(M) = - W) -
we get the following long exact sequence
0~ Dg(M,La(N)) » Dg(M,N) = Da(M, =) = R*(Dg(M, La(N)) ~...
d
Using the corollry 2.14, D4(M, Lg(N)) = 0 = R*(D4(M, Lg(N)). Thus,
N
Dg(M,N) = D (M—)
Now, from the short exact sequence
N
L Da(N) » Hg(N) - 0,
we obtain thelong exact sequence
N N
0 - Dg(M,——=) = Dg(M, D4(N Dq(M, HY(N R'(Dg(M,——=
= Dy(M, 1) = Da(M, Dg () = Da(M, H{(N)) = R Dy(M, —9) =
But, by corollary 2.14, Dg(M, HY(N)) = 0. Therefore the result is holds.
ii) Since Extk (M, N) = 0, then from the proposition 2.9, we get the exact sequence

Homr(MN) 1) (M.N) = HI(M,N) = 0
_ - - 0. *
Loy~ DeMN) > HIOLN) *)
Hence, the long sequence
Homgr(M, N) 1 ; Homg (M, N)
0- Dy(——F7~) = Da(Da(M,N)) = Dg(Hg(M,N)) = R'(Dq( )) -

Lq(M,N)
) = D4(Dg(M,N)). But by [7, Theorem 2.75],

Lq(M, N)

is exact. Now, by corollary 2.6 i), Dd(w

La(MN)

D4(M,N) = _lim HomR(ﬁ, N) = _lim HomR(E ®r M,N)
dlmESd aM dlm%id a
= _lim HomR(E, Homy (M, N)) = Ly(Homg(M, N)).
dlmESd a
Now, by corollary 2.6 ii), the claim first part is holds.
For the second part, from (*), we get the following long exact
. . Homg (M, N
.- HIL(HY(M, N)) - Hg(%
Now, since Lq(Hi(M, N)) = H3(M, N)), thus by corollary 2.5 i), the result is complete.
iii) Since M is a flat R- module, then by [3, Corollary3.59],
D4q(M,N) = _lim Homg(aM,N) = Homg(aXgrM,N)
dlmESd
= _lim Homg(a, Homg(M,N)) = Dg(Homg (M, N)).
dlmESd
Now, by corollary 2.6 iii), we have
Dq(Dg(M,N)) = D4(Dgq(Homg(M,N))) = Dg(Homg (M, N)) = Dy(M, N).
Now, by putting Dq(M, N) instead of M in lemma 2.2, the second part holds.

) > Hy(Da(M,N)) - Hi(HI(M,N)) > ...
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