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A B S T R A C T 

 

Calculation and analysis of energy spectrum in Coulomb 
potential of atomic systems, and hadrons in relativistic conditions 
due to requirements of using higher grades of relativistic corrections 
have attracted physics theoreticians. The ability to create mono-
electron ions of heavy, semi-heavy, strange atoms and/or hadrons 
atoms in laboratory conditions has boomed the need of more precise 
and meticulous corrections. One of these factors is to determine 
electron mass and recoil effect of core in this system. Perturbative 
and variation theories, regardless of recoil effect, have been 
calculated in this way so far. The method presented in this paper 
considers recoil effect intervening and without considering that it 
researches energy spectrum, mass, and constituent mass in the 
system. To make more sense of the calculations, hydrogen atomic 
system has been studied to pave calculation methods for other 
atoms and systems including quarks, glueball, and pomeron which 
can be over- generalized using the intended potential. 

© 2013 Sjournals. All rights reserved. 

1. Introduction 

The description of the bound states of atoms is one of the classical problems in quantum mechanics. This 
problem has been studied by many scholars who have made it well known.  At present, the study of the 
mechanism of interaction of colored objects has widely adapted the phenomenological potential model of quarks 
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(Quigg, Rosner, 1979), built by analogy of the theory of atomic structures. This model describes precisely spectrum 
and characteristics of charmonium and bottomium (Martin, 1981) which consist of heavy quarks. It is necessary to 
consider the relativistic nature of interaction, during the study of the properties of hadrons, which are formed by 
lightweight quarks. However, the conventional prescription of the calculation of the relativistic nature interaction 
within the framework of the phenomenological potential model of quarks is absent at the moment. On the other 
hand, the calculation of different corrections of higher order is required for describing the last experimental data 

along with the atomic spectrum. In particular, in the last ten years, transition frequency ss 21   levels in 

hydrogen atom have changed to three orders, i.e. from 3.10-10 (Boshier, 1989) to 3,4.10-13 (Udem, Huber, 1947). 
The relative uncertainty in measurement of the muonium hyperfine splitting has reduced recently by the factor 
three from 3,6.10-8 (Mariam, Beer, 1982) to 1,2.10-8(Liu, Boshier, 1999). Thus, the definition of relativistic 
corrections to the energy spectrum for both atomic and hadrons structures is one of the urgent problems for 
toddies. Corrections in atomic physics can be classified as relativistic, radiation and bonded by return. Numerous 
experimental and theoretical works are dedicated to the evaluation of these corrections. At the present time, the 
technical achievements of experimental studies have made it possible to obtain the ions of heavy elements with 
one electron. In this case, the coupling constant of electromagnetic interaction becomes the order of one so that 
electromagnetic interactions are strengthened and the calculation of relativistic corrections becomes necessary. 
However, the theoretical models, intended for describing the relativistic corrections to the spectrum, are limited to 
the lowest order on the coupling constant. We will consider this problem, according to the asymptotic behaviour 
of the loop function in the scalar electrodynamics field and method oscillator representation in quantum physics. 
The mass of the bound state analytical is calculated with Coulomb interaction. The result is in full supplement with 
the result of other theories. 

2. General formalism 

Nowadays, calculating energy spectrum with coulomb potential and considering relativistic features of bound 
state system has attracted many researchers. That is due to the fact that it is essential to involve various higher 
order relativistic corrections to describe the results of atomic spectrum experiments. Coulomb return spectrum 
has been calculated by using perturbative and variation theories in papers(Lucha, Schoberl, 1997), (Brambilla, 
Vairo,1995) and (Erickson, Crotch, 1988) respectively. However, this paper aims at using method oscillator 
representation of energy spectrum and hydrogen atom mass.  

We determine the mass of a bound state in asymptotical behaviour of the polarization loop function for two 
scalar particles in external electromagnetic field. The polarization operator in an external electromagnetic field 
looks like (Dineykhan at. al, 2009).  

 Amm AyxGAyxGyx  )|,()|()( 2
*

,1  (1) 

Here is taking the average on external statistical field )(xA . The Green function )|,( AxymG of a scalar 

particle in external gauge field looks like:  
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Where m - mass of a scalar particle, and g - is the coupling constant of interaction. In this case, we obtain 

the non-relativistic limit with )( c of the loop function )(x . For so doing, let us restore the parameters   

and с  in (2(.  

The gauge field averaging is defined as follows:   
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Here )(xJ  is a real current, and  
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The mass of the bound state (1) is determined as:  
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The solution of (2) can be represented in the form of the following functional integral:  
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Where we used the notations: 
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The conditions )1()0(  BB   and  1Bd . Substituting (6) in (1) and after some calculations, we get 

for the loop function:  

 
 

 212

2

2

2
1

1

2

1

0

22

21

0

,
22

exp
8








J

mxmx

x

dd
xП 






























 



 (8) 
Where  
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 The functional integral in (9) is similar to the Feynman Path integral trajectories in non-relativistic quantum 

mechanics (Feynman, Hibbs, 1965) for the motion of two particles with masses 21, . The interaction of these 

particles is described by the nonlocal functional in (10), in which they contain both potential and non-potential 
interaction. 

Taking (8) and (9) into account in the limit  yx  from (5) for   the mass of the bound state we get (for 

detail see (Jahanshir, 2010) 
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Where the parameter   is determined from the equation: 
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Here )(E  is the Eigenvalue of the non-relativistic Hamiltonian which is defined by  
)(||

21||
21.),(lim

 Ex

x econstI


 
(13) 

We will consider parameters 21,  as the components of mass of the bound state. This mass is different 

from the masses 21,mm  of free condition.  

Thus, we should obtain specific expression for jiW ,  from (13). It is necessary to determine the structure of 

Hamiltonian for determining the mass of the bound state, which is defined in form of Functional integral from (9) 
and (10) (Dineykhan, 2002). 

According to (7), the interaction potential, we rewrite equation (10) in normal measure system: 
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In the work[13], the limit c   is obtained:  
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Where )(rV - is the interaction potential. For Coulomb interaction, it is equal:  

 
r

Z
rV




 (16) 
Therefore, we must use idea (14) to determine the potential structure of the Hamiltonian interactions, and 

then the Eigenvalue of the Hamiltonian and the result define the mass of bound state.  For this purpose, we 
consider following Schrödinger equation (Dineykhan, Efimov, 1991), (Dineykhan, Efimov, 1995) and (Dineykhan, 
Nazmitdinov, 1999): 
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from this equation we find the energy spectrum of Coulomb potential:  
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where  -is the coupling constant of electromagnetic interaction and  n- is the principal quantum number. 

Let us determine the mass spectrum of atomic system with masses m1 = mnuc which is the mass of nuclei, and 
m2 = me is the mass of electron. In this case, for the binder energy we have 

nucsystembin mME 
(19) 

in which it is the bound state energy.  
After some simplification from (10) for the mass of system, we get (Jahanshir, 2004): 
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And after some calculation from (11) for the constituent mass of electron and nuclei: 
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where 
e

nuc
m

my  -is the mass of nuclei in atomic system and x is a parameter that is determined from: 
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and for the binding energy: 
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3. Mass spectrum and recoil effect in hydrogen atom 

The present study covers Hydrogen atom and it is supposed to formulate the bound state with only Coulomb 
interaction (Dineykhan, Nazmitdinov, 1999). In this case, the first approximation the mass of nuclei is usually 

defined limitless mnuc=. We calculated the mass and binding energy of hydrogen atom, after some similar 
calculations, which have been presented above, for the constituent mass of electron from (17) with Z=1 we can get 
(Jahanshir, 2011): 
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Then for the bound state energy we will have: 
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The last calculations, which have been represented above, for the bound energy and the constituent mass of 

electron, we will get to: 
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The above mentioned formulations illustrate that intersystem electron mass and energy of system in 

hydrogen atom depend only on coupling constant and main numerical quantum which makes it independent of 
other parameters. The table below (Table 1), demonstrates these variations in different orders, and it asserts that 
increasing return constant and higher orders of intersystem electron mass result in an increase in coupling energy 
system and it is me =0.511 (Me V) compared to static mass[18].  

Investigating atom spectrum either heavy or light, if atom mass is determined, sounds very important (recoil 
effect) which has not yet been presented through perturbative and variation theories. Assuming atom mass is 
limited; we can calculate energy of system, and intersystem electron mass and core through (20-24). If supposedly, 
the atom mass is limited, the following table (Table 2) shows calculating changes of coupling energy system and 
electron mass and core mass in the first excitation order (n=2). It can be clearly observed that changes of 
intersystem electron mass are bigger compared to intersystem core mass and it increases as the constant index 
increases.  
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Table 1  
Binding energy (E, MeV) and constituent mass (μ, MeV) of electron in limitless nuclei mass of Hydrogen atom, 

.511.0 MeVme   

 
α=0.356  α=0.435  α=0.500 

n=1 n=2 n=3  n=1 n=2 n=3  n=1 n=2 n=3 

μ 0.546 0.519 0.514  0.567 0.523 0.516  0.590 0.527 0.518 
E 0.477 0.502 0.507  0.460 0.498 0.505  0.442 0.494 0.503 

 

 

Table 2 
Binding energy (E, MeV), constituent mass(μe, μnuc ,MeV) and Variation of constituent mass of particles 

electrons (Δμe, Δμnuc ,MeV),  in Hydrogen atom with recoil effect, 0.511 , 938.272028e pm MeV m MeV   

Ebin Δμsys μnuc Δμe μe  

0.50270 938.77490 938.272030 0.00830 0.5192 α=0.356 
0.49870 938.77080 938.272035 0.12520 0.5235 α=0.435 
0.49470 938.76680 938.272038 0.32750 0.5277 α=0.500 

4. Conclusions 

In this paper, we studied hydrogen atom on the basis of investigation of asymptotic behaviour of the loop 
function for the scalar particles in the external gauge field and determined the Binding energy with relativistic 
feature of interaction. We have been able to obtain the mass spectrum of bound state and the constituent mass of 
hydrogen atom system. It is shown that the mass of particles is different in bound and free states. We have found 
out that determining the mass of the bound state systems requires; first of all, determining the Eigenvalue of the 
Hamiltonian with Coulomb potential and then calculating the mass and binding energy of atom which we could 
achieve. This method provides us with magnificent information comparing to other theories such as perturbative 
and variation. The current paper has calculated energy spectrum and hydrogen atom constituents mass in limited 
and unlimited core mass conditions and we could conclude that constituents mass in the system is different from 
constituents mass in free conditions. This analysis, using complementary calculations and having a determined 
core mass, investigates a very important atomic system i.e. recoil effect. The method presented in this paper 
shows that recoil effect is well-suited for equations, and it can be easily used for all atoms which have not been 
calculated through perturbative and variation theories so far (for n>2). This method can be applied as such so as to 
calculate necessary parameters for exotic or hadronic atoms. Therefore, the presented equation is an appropriate 
method for investigating quarks, glueball and pomeron systems in which we can analyse changes in energy and 
mass spectrum using intended potentials.  
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