

Original article

The epipelic algal distribution of upper bonny estuary, Amadi-Ama creek, Niger delta in relation to sediment quality indices

Contents lists available at Sjournals

Journal homepage: www.Sjournals.com

nimal Science

B.B. Otene*, O.A. Davies

Department of Fisheries and Aquatic Environment, Rivers State University of Science and Technology, Nkpolu, Port Harcourt, Nigeria.

*Corresponding author; Department of Fisheries and Aquatic Environment, Rivers State University of Science and Technology, Nkpolu, Port Harcourt, Nigeria.

ARTICLEINFO

Article history: Received 03 January 2013 Accepted 20 January 2013 Available online 31 January 2013

Keywords: Epipelic Algae Estuary Creek Sediment parameters Niger Delta

ABSTRACT

The epipelic algal distribution in Amadi-Ama creek with respect to the sediment parameters were investigated from January 2009-December 2010(2years). Epipelic algal and sediment samples were collected from six sampling stations and analysed following standard limnological method of APHA. A total of 9709count/ml and 9584count/ml epipelic algae consisting of five(5) taxa and 79 species were identified in 2009 and 2010 respectively(Table1).Epipelic algal abundance followed the order: Bacillariophyceae > Cyanophyceae > Chlorophyceae >Euglenophyceae> Chrysophyceae. Spatially, the highest abundance of epipelic algae was recorded in station 3 in 2009 (2189count/ml) and 2010 (2262count/ml) representing 22.55% and 22.96% respectively. The most dominant species of epipelic algae observed was Cyclotella operculata. Apart from temperature, other sediment parameters such as pH, conductivity, nitrate, sulphate, phosphate and chlorophyll'a' exhibited spatial difference significantly (p<0.05). The high phosphate levels above the USEPA permissible limit in natural aquatic bodies indicate organic pollution. The observed chlorophyll'a' level in this study placed Amadi-Ama creek between mesotrophic and euthrophic level of productivity.

© 2013 Sjournals. All rights reserved.

1. Introduction

Epipelic algae are primary producers that dwell on the intertidal or subtidal mud surfaces of estuarine, coastal and marine environments (Chindah, 1998). The epipelic algae ranked almost the least in the trophic organization. They are capable of utilizing solar energy to synthesize complex and high energy food substances by combining simple and low density compound such as carbon dioxide and water. Algae belong to a highly diverse group of photoautotrophic organisms with chlorophyll'a' and unicellular reproductive structures, which are important for aquatic habitats (Chindah et al.,2004). These food materials are usually covered or inundated by water in streams, Creeks and lakes temporarily or permanently in sediments which are integral parts of the aquatic environments providing habitat, feeding and rearing areas for shellfish and other fauna.

Epipelic algae can perform a range of ecosystem functions, which include biostabilisation of sediments, regulation of benthic-pelagic nutrient cycling, and primary production. There is a growing need to understand their ecological role in light of current and future alterations in sediment loading resulting from land-use change and land management practices (Poulickova <u>et al.</u>,2008). Epipelic algae range from minute to multi-cellular forms of diatoms, epipelic, blue and green algae. Species types, biomass, community structure and abundance pattern depend on water body, nutrient status and seasonal changes.

Mucha et al., (2003) described sediment as the ultimate sink of contaminants in the aquatic ecosystem and also added that the sediments of Bonny Estuary are contaminated and the contaminants consist of the organic and inorganic compounds released into the Estuary. Chindah et al.,(2004) and Izoafuo et al.,(2004) reported low nutrients in the sediments of the Bonny Estuary and ascribed it to high metabolic rate in the Niger Delta water bodies where nutrients released are easily used up and low retention and gentrification). The knowledge of the state of water quality of a water body in rivers and creeks due to changes produced by human activities is usually the first step in establishing an efficient water management system which is essential for the preservation of the ecosystem (Douterelo et al., 2004). Investigation by Guy (1992) revealed that the abundance and distribution of aquatic organisms precisely plankton and epipelic algae is a function of the physicochemical variables or parameters of such a water body or aquatic ecosystem. Odum et al., (1993) observed that species diversity tends to be low in physically controlled ecosystem (subjected to strong physicochemical limiting factors) and high in biologically controlled ecosystems. Storm water affect dispersal of sediment and that it is most pronounced when bottom currents exceed level necessary to erode sediment and fauna (Powell and Chindah, 1990). Studies have showed that there were good correlations between epipelic algal biomass and standing crop and some of the nutrient parameters especially nitrate-nitrogen and phosphate in the various areas of Niger Delta waters studied (Chindah, 1998).

At present, there are no sufficient reports on the epipelic algal community of Amadi Ama creek in terms of distribution and abundance. Therefore, the aim of this study was to investigate the epipelic algal distribution and abundance with respect to the environmental parameters.

2. Materials and methods

2.1. Study area

The Amadi-Ama creek is one of the tributories of the upper Bonny Estuary, brackish and tidal in nature with fresh waters intrusion from the surrounding inland waters and flood during the wet season. The Bonny River Estuary lies on the South-Easthern edge of the Niger Delta between longitudes $6^{\circ}58'$ and $7^{\circ}14'$ East and latitudes $4^{0}19'$ and $4^{0}34'$ North with an estimated area of 206km^{2} and extends 7km offshore to a depth of about 7.5metres (Scott, 1966,). Amadi-Ama Creek is located in Port Harcourt Local Government Area of Rivers State and lies between longitude 5° $60'E-6^{\circ}$ 60'E and latitude 6° 06'N-6 07'(Fig.1).Like all parts of south-south Nigeria, the Amadi-Ama creek is exposed to two distinct seasons which include the wet seasons(May-October and the dry season(November-March). The creek deposits are varied which are reflected in the nature and the distribution pattern of the vegetation in the area. The creek is subject to tidal influence. Water flows in one direction rapidly during the flood period but slightly reversed at the peak of the dry season due to the rising tide.

2.2. Sampling stations

The six sampling stations chosen along the creek course were at least 500m apart. The stations chosen include Station 1:((Amadi), Station 2 (Nkpogu), Station 3(Oginigba), Station 4(Woji), Station 5(Azubie), Station 6(Abuloma Jetty)(Fig.1). The stations were established through a reconnaissance survey undertaken using boat from the eastern by-pass through the Amadi axis and and on foot along the creek banks from the Rumukalagbo to the Nkpogu axis through Woji to Abuloma jetty.

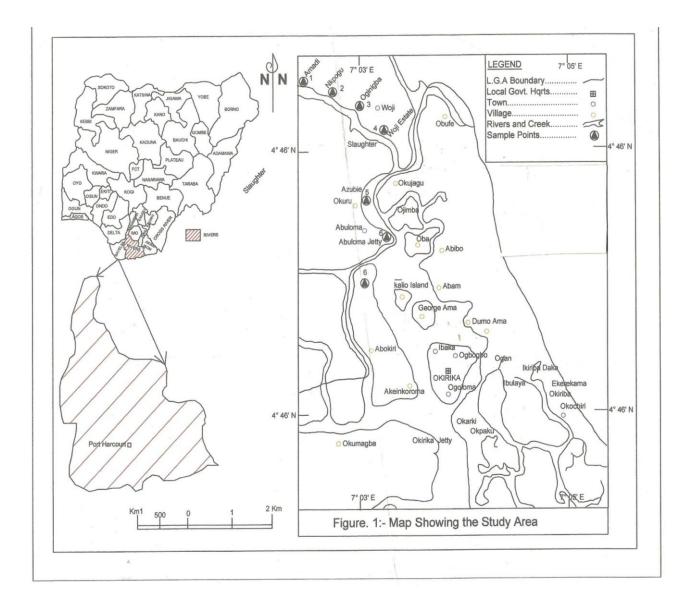


Fig. 1. Map showing the study area.

2.3. Sample collection and analysis

The epipelic algae samples were collected with a 2x2cm quadrat at six (6) random points at 1meter interval. These samples were also used for standing crop and biomass (pigment) analysis. Each quadrat was carefully scrapped with a sharp scalpel to a depth of 0.2cm and sediment including the associated algae from the 6 quadrat composited to represent a sample and emptied into sampling bottles containing 4% formalin each. Samples were placed upright in a wooden track and stored in an ice-chest (at temperature below 5° C) prior to analysis in the laboratory. Epipelic algal identification and enumeration were carried out in the laboratory under a binocular compound microscope with magnification, 400 x 40 and modified Standard Methods (APHA 1998) using identification key.

The sediment samples were collected with Beckmans grab monthly to determine sediment parameters during the low tides. The collected samples were then transferred to already labeled water proof bags and taken to the laboratory where they were air dried under a room temperature and kept for further analysis. Samples for chlorophyll'a,' and other parameters were analysed following standard methods (APHA, 1998).

2.4. Calculation

The abundance of epipelic algae was calculated counts/ml of the original sample using the equation modified by Boyd (1981):

D= <u>T (1000 x volume of concentration x Volume of concentrate</u>

AN x volume of sample

Where:

D= Density of plankton (1nd/m1)

T = Total number of plankters counted

A = Area of grid in mm^2

N = Number of grids employed

1000 =Area of counting chamber in mm² (Boyd, 1981).

2.5. Statistical analysis

Data obtained for epipelic algae and sediment parameters were subjected to analysis of variance (ANOVA), Duncan multiple range test (DMR) and pearson correlation coefficient for analysis using SAS (2003) and Microsoft Excel (2003) packages.

4. Results and discussion

A total of 9709count/ml and 9584count/ml epipelic algae consisting of the five(5) taxa, Bacillariophyceae, Chlorophyceae, Cyanophyceae, Chrysophyceae and Euglenophyceae and 79 species were identified in 2009 and 2010 respectively(Table1).Epipelic algal abundance followed the order: Bacillariophyceae > Cyanophyceae > Chlorophyceae> Euglenophyceae> Chrysophyceae. Epipelic algae perform a range of ecosystem functions, which include biostabilisation of sediments, regulation of benthic-pelagic nutrient cycling, and primary production. There is a growing need to understand their ecological role in light of current and future alterations in sediment loading resulting from land-use change and land management practices (Poulickova et al. 2008). These species number observed in this study is low compared to the 126 species reported in the New Calabar/ Bonny River by Chindah (1998), 129 algae species by Davies (2009) in Okpoka creek, and the 110 species recorded by Chindah et al.,(1999) in the upper reaches of New Calabar River. Guzkowska and Gasse (1990) reported that Bacillariophyceae presence in an area could be an indication of pollution. Frankorich et al (2006) used the distribution of algae precisely Bacillariophyceae to reflect the average biological condition of water bodies. The dominance of Bacillariophyceae in Amadi-Ama creek in this study suggests that Amadi -Ama creek is stressed or polluted. In this study, it was observed that the most dominant species of epipelic algae is Cyclotella operculata followed by C. comta, C.glomerata, Euglenaacus and Anabaaena flos-aqua. This observation is contrary to the observations of Chindah (1998) in Bonny /New Calabar River, Tiseer et al (2008), in Samara stream (zaria) which could be attributed to difference in environmental factors such as influx of anthropogenic wastes, type and nature of sediments and difference in physicochemical parameters of the aquatic ecosystem.

Table 1a	I
----------	---

Epipelic Algal Species Abundance and Composition in the Study Area (Jan 2009-Dec 2010).

S/N	Bacillariophyceae	Total 2009	%	Total 2010	%
1.	Amphipropra Ornata	111	1.14	108	1.10
2.	Asterinella Formosa	104	1.07	97	0.98
3.	Achnanthes gracilina	114	1.17	91	0.92
4.	Cyclotella Antigua	99	1.02	100	1.01
5.	C. cumta	828	8.53	692	7.02
6.	C. glomerata	638	6.57	893	9.06
7.	C. operculata	1319	13.59	1250	12.69
8.	C. Striata	131	1.35	102	1.04
9.	Gmbella Affinis	118	1.22	103	1.05
10	C. Species	110	1.13	85	0.86
11	Diatoma species	101	1.04	102	1.04
12	D. Elongatum	104	1.07	104	1.06
13	Diploneis Sp.	107	1.10	99	1.00
14	Eunotia tenella	114	1.17	94	0.95
15	E. fallax	102	1.05	99	1.00
16	Fragilaria internizula	112	1.15	97	0.98
17	Frustulia rhombodies	105	1.08	90	0.91
18	Gomphonitzschia ungeri	90	0.93	97	0.98
19	Gyrpsigma attenuatum	102	1.05	86	0.87
20	G. spenceri	99	1.02	104	1.06
21	, Himidisius species	114	1.17	100	1.01
22	Melosira moniliformis	119	1.23	102	1.04
23	Navicula bacillum	102	1.05	98	0.99
24	N. cuspidata	109	1.12	79	0.80
25	N. Cuspidata	96	0.99	85	0.86
26	N. minima	100	1.03	96	0.97
27	Nitzschia paradox	103	1.06	102	1.04
28	N. gracillis	95	0.98	90	0.91
29	N. Ricta hantsch	106	1.09	88	0.89
30	Pinnulariamacilenta	102	1.05	90	0.91
31	P. Interrupta	93	0.96	93	0.94
32	Snedra ulna	88	0.91	119	1.21
33	S.acus	95	0.98	100	1.01
34	Thalassiosira species	88	0.91	102	1.04
-	Total	5837		5268	-
	%	60.12		54.97	
S/N	Chlorophyceae	Total 2009	%	Total 2010	%
35.	Actinastrum species	102	1.05	132	1.34
36.	Akinstrodemus falcatus	92	0.95	127	1.29
37.	Cosstrum microporun Nag	92	0.95	127	1.29
38.	Coestrum reticulalum D	92	0.95	121	1.23
39.	Cosmarium conatum	86	0.89	126	1.28

94 93 86 89 89 10 ⁴ 5 96 94 96 14 ⁴ 14.	0.96 0.89 0.92 0.92 4 1.07 0.99	119 121 126 111 108 105	0.97 1.21 1.23 1.28 1.13 1.10 1.07
86 89 10 ⁴ 5 96 94 96 14 ⁴	0.89 0.92 0.92 4 1.07 0.99 0.97	121 126 111 108 105	1.23 1.28 1.13 1.10
89 89 104 s 96 94 96 144	0.92 0.92 4 1.07 0.99 0.97	126 111 108 105	1.28 1.13 1.10
89 104 s 96 94 96 144	0.92 4 1.07 0.99 0.97	111 108 105	1.13 1.10
104 s 96 94 96 144	4 1.07 0.99 0.97	108 105	1.10
s 96 94 96 144	0.99 0.97	105	
94 96 144	0.97		1 07
96 144		107	1.07
144	0 00		1.09
	0.99	108	1.10
14.	42	1742	17.68
	.38	17.68	
116	6 1.19	137	1.39
106	6 1.09	132	1.34
e 101			1.04
es kutz 76	0.78		0.98
92			0.96
85	0.88		0.95
81	0.83		0.99
s-aquae 84			1.19
84			0.98
84	0.87		0.96
97	1.00		0.98
70	0.72		1.08
72	0.74		0.98
72	0.74		0.87
70			0.90
76			0.95
86	0.89		0.85
144		1674	5.00
14.		16.99	
	tal 2009 %	Total 201	.0 %
9	0.09		0.41
85	0.88		0.73
94	0.00	112	0.75
0.9	7	1.14	
	tal 2009 %	Total 201	.0 %
90	0.93		1.06
80			0.97
76			0.83
70	0.79		0.85
89	0.92		0.88
85	0.83		0.93
atumi 92			0.94
			0.97
			0.89
			1.04
			0.86
			0.00
		9584	
	90 78 83 83 89(9.2	90 0.93 78 0.80 83 0.85 83 0.85 896 9.23	900.9390780.8088830.85102830.85858961058

Number of species per year							
CLASS	2009	2010	TOTAL	%			
Bacillariophyceae	34	34	68	43.04			
Chlorophyceae	15	15	30	18.99			
Cyanophyceae	17	17	34	21.52			
Chrysophyceae	2	2	4	2.53			
Euglenophyceae	11	11	22	13.92			
Total	79	79	158	100.00			

Table 1b Relative Abundance Of Epipelic Algae in the Area (Jan 2009- Dec. 2010)

Spatially, the highest abundance of epipelic algae was observed in station 3 in both 2009 (2189count/ml) and 2010 (2262count/ml) representing 22.55% and 22.96% respectively (Table 2). The observed high abundance of epipelic algae in Station 3 could be attributed to the accumulated wastes like cow dung and poultry droppings constantly washed into the creek at this station and increased chlorophyll'a'. These high organic materials enhance phytoplankton growth (Lowkman and Jones, 1999). The low abundance of epipelic algae observed in station 6 could be attributed to decreased chlorophyll'a' level and other parameters which could be unfavorable in the station.

Chatian	Bacillar-	illar- Chlorop Cyanoph	Cyanoph	Eugenop	Chrysop	Total	%
Station	iophycea	hyceae	yceae	hyceae	hyceae		70
1	1166	309	299	183	20	1977	20.36
2	1042	259	253	156	22	1732	17.84
3	1309	317	348	200	15	2189	22.55
4	960	196	201	140	13	1510	15.55
5	729	189	191	118	9	1236	12.73
6	631	172	148	99	15	1059	10.91
TOTAL	5837	1442	1440	896	94	9709	100.00

Table 2b

Spatial Mean Values of Epipelic Algae in the Area(January---December(2010)

Station	Bacillar- iophycea	Chlorop hyceae	Cyanoph yceae	Eugenop hyceae	Chrysop hyceae	Total	%
1	962	351	361	217	30	1921	19.5
2	916	313	344	200	19	1792	18.19
3	1288	399	334	221	20	2262	22.96
4	702	219	244	140	16	1321	13.41
5	708	234	202	152	12	1308	13.27
6	692	226	189	128	15	1250	12.69
TOTAL	5268	1742	1674	1058	112	9854	100.00

Table 3 showed the spatial mean values of sediment parameters in the study area. Temperature showed no spatial significant difference which is typical of tropical waters. The highest pH values were recorded in stations 4(4.43±1.09Ntu) and 1(4.27±1.13Ntu) in 2009 and 2010 respectively with significant difference. This could be due to difference

in the level of decomposition in the stations. The spatial significant difference exhibited by conductivity could be attributed to difference in influx of allochotonous and inorganic wastes introduced into the creek. The highest nitrate values were recorded in station 1 in 2009(1.63±0.66m/l) and 2010(1.48±0.60mg/l) respectively. Sulphate

values also showed similar level of significant difference with the highest value observed in station 3. The observed low concentration has also been observed by Chindah et al (1998) in the New Calabar River, Chindah and Onyebuchi (2003) in a Swamp forest Stream in the lower Niger Delta and Chindah (2004) in a Tropical Estuary in Niger Delta. The high phosphate levels above the USEPA permissible limit in natural aquatic bodies indicate organic pollution from anthropogenic sources (USEPA, 2002). Chlorophyll 'a' concentration in station 3 appeared highest in both first and second years of study. This could be caused by increased nutrient load in the station noted by Chindah(2004) in Bonny River system. Also, the presence of the highest epipelic algal abundance in station 3 than any other station in this study is indicative of a stressed environment.

Table3a

PARAM/STN	1	2	3	4	5	66
Temperature	29.35±0.81a	29.23±1.02a	29.12±1.09a	28.87±1.18a	29.07±0.98a	29.45±0.45a
	28.00-30.20	27.80-30.50	27.20-30.20	27.24-30.30	27.60-30.10	28.44-30.40
PH	2.81±0.41c	3.78±0.47ab	4.22±0.87ab	3.99±0.55ab	4.43±1.09a	3.36±0.49c
	2.00-3.30	3.10-4.30	3.10-6.10	3.10-5.00	3.20-6.40	2.60-4.20
CONDUCT	4116.67±1780c	4416.67±1674b	4516.7±17ab	5424±1144a	4708.3±16ab	4887.5±12ab
	1000-7200	1200-7500	1500-6900	3700-7000	2000-7000	3250-6900
NITRATE	1.63±0.66a	1.17±0.38b	0.90±0.27b	0.99±0.26B	0.87±0.30b	0.99±0.17b
	0.90-2.80	0.80-1.80	0.50-1.60	0.80-1.70	0.60-1.66	0.80-1.40
SULPHATE	245.17±227.33b	280.92±145a	310.3±137a	236.7±65b	267.92±15b	288.37±14a
	78.0-920	96.0-700	180.5-720	180-400	30.0-600	190.0-619
PHOSPHATE	1.65±0.19a	1.56±0.29ab	1.68±0.25a	1.43±0.26b	1.44±0.12b	1.65±0.12a
PO4 ²⁻	1.30-1.95	1.20-1.80	1.3-1.95	0.90-1.80	1.20-1.60	1.40-1.80
CHL'a'	2.22±1.26b	1.87±1.22b	3.50±0.49a	1.97±1.14b	1.93±0.85b	1.68±0.76b
	0.00-3.26	0.00-3.90	2.5-4.10	0.00-3.40	0.0-3.00	0.0-2.80

Table3b

Spatial Mean Values of Sediment Parameters in Amadi-Ama Creek(Jan-Dec2010)

PARAM/STN.	1	2	3	4	56	6
Temperature	28.75±1.67a	28.90±1.56a	29.0±1.43a	28.91±1.56a	28.73±1.37a	28.93±1.81a
	26.0-30.10	26.40-30.30	26.90-30.10	26.40-30.40	26.60-30.10	26.0-31.10
PH	4.27±1.13a	4.01±0.83b	3.78±0.84ab	3.96±0.66a	4.03±1.04b	3.24±0.51a
	2.60-6.00	3.10-5.33	2.60-5,00	2.50-4.90	2.10-5.30	2.10-4.20
CONDUCT	4716.7±2067b	5275±1553a	5460.8±1199a	5020.8±1619a	5175±1799a	4595.8±187b
	3000-8200	3400-8000	3900-7000	3100-7200	3200-8200	1000-8400
NITRATE	1.48±0.60a	1.01±0.40b	0.79±0.26b	0.83±0.29b	0.73±0.17b	1.00±0.57b
	0.70-2.20	0.60-1.90	0.30-1.30	0.50-1.50	0.50-1.00	0.40-2.50
SULPHATE	225.41±238c	270.88±14b	297.9±141.2a	238.05±77.36c	290.96±122a	286.3±15b
	79.20-950	90.0-680	195-730	160.5-430	201-580	150-600.1
PHOSPHATE	1.64±0.21ab	1.54±0.10b	1.60±0.21ab	1.50±0.21b	1.49±0.17b	1.74±0.14a
	1.30-1.90	1.40-1.70	1.40-2.10	1.10-1.85	1.20-1.80	1.45-1.94
CHL'a'	5.25±0.57b	5.24±0.52b	6.15±0.24a	4.93±0.61bc	4.74±0.49c	4.23±0.73d
	3.90-6.10	4.0-6.00	5.90-6.50	4.00-5.90	3.90-5.40	2.90-5.20

References

American Public Health Association (APHA), 1998. Standard methods for the examination of water and wastewater. 20th (ed) Washington DC 1213pp.

Boyd, C.E., 1981. Water quality in warm water fish ponds. Auburn University Press, Alabama, USA. 59-71

Chindah, A.C., 1990. Ecological post impact study of Ebubu-Ochani oil spillage Shell Development Company Limited.

- Chindah, A.C., Cordelia, S.O., 2003. Levels of Hydrocarbon and Heavy metals in sediment and decapods crustaceans(Crab-Uca Tangeri) in the Bonny/New Calabar Estuary, Niger Delta.*Pol.Journal of Environmental Protection*, 25/26,55-71.
- Chindah, A.C., 1998. The effects of industrial activities on the periphyton community of upper New Calabar River, Nigeria.Water Res.32(4),1137-1143.
- Chindah, A.C., Hart, A.I., Uzoma, A.I., 1999. Periphyton associated with submerged macrophytes(Crinium natans) in the Upper reaches of the New Calabar River, Niger Delta. *J of Agric.Biotec.*&Environment.1(2), 37-46.
- Chindah, A.C., Braide, S.A., Oranye, R.O., 2004.Response of a common Niger Delta wetland Catfish to changes in pH. *Niger Delta Biologia* 4(2),56-65.
- Davies, O.A., Abowei, J.F.N., 2009. Sediment Quality of Lower Reaches of Okpoka Creek, Niger Delta, Nigeria
- Douterelo, I., Perona, E., Meteo, P., 2004. Use of cyanobacteria to assess water quality in running waters. *Elsevier Environ. Pollut.* 127, pp 377 884.
- Frankovich, T.A., Gaiser, E.E., Zieman, J.C., Wachinicka A.H., 2006. Spatial and temporal distributions of epipelytic diatoms growing on Thalassia testudinum banks exkong relationships to water. *Hydrobiogia*567,259 271.
- Guy, D., 1992. The ecology of the fish pond ecosystem with special reference to Africa. 124- 130Pergamon press 220 230pp.
- Guzkowska, M.A.J., Gasse, F., 1990. Diatoms indicators of water in some English urban lakes. *Fresh Water biology* 23, 233 250.
- Izuafuo, W.A.I., Chindah, A.C., Braide, S.A., Iyalla, I.A., 2004. An assessment of sediment quality at the vicinity of marine landing jetties at the middle reach of Bonny Estuary, Niger Delta. *Scientia Africana* 3(2), 1- 10.
- Lowkman, K., Jones, I.R., 1999. Nutrient sestomi chlorophyll relationship in Northern Ozark Resrvoir, Canada. *Journal of Fish and Aquatic Science* 56,
- Mucha A.P., Vasconcelos, M.T.S.D., Bordalo, A.A., 2003. Macrobenthic community in the Douuro Estuary in relation with trace metals and natural sediment characteristics. *Environmental pollution*, 121,169-180.
- Poulickova, A., Lysakova, M., Hasler, P., Lelkova, E., 2008c.Fish pond sediments-the source of palaeoecological information and algal seed banks. "-Nova Hedwigia 86,141-153.
- Statistical analysis system (SAS)., 2003. Statistical analysis system. User's Guide SAS/STA-t version, 8th edition, SAS, Institute, Inc. Cary, N. C., USA.
- Tiseer, F.A.Y.T., Chia, A.M., 2008.Seasonal Occurrence of algae and physicochemical parameters of Samaru stream, Zaria, Nigeria. *Asian J. Earth Sci.*, *1*,*31-37*
- United state environmental protection Agency (USEPA), 2002. Methods for evaluating wetland conditions: using algae to assessenvironmental conditions in wetlands. Office of water, U.S. Environmental Protection Agency, Washington D.C EPA 822 R 02 021.