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Measuring the cation exchange capacity (CEC) for all horizons of
every map unit component in a survey area is very time consuming
and costly. This study was conducted (i) to evaluate the group
method of data handling (GMDH) neural network (NN) and genetic
algorithm model and (ii) to compare GMDH-type NN with other
artificial neural networks such as the multilayer perceptron (MLP),
radial basis function (RBF) and regression-based models for
predicting CEC in soils of Lahijan, north of Iran. In this study, the
proposed model was trained before requested predictions. The data
set was divided into two parts: 70% were used as data for training
(110 soil samples), and 30% (40 soil samples) were used as a test set,
which were randomly extracted from the database. In order to
evaluate the models, coefficient of determination (RZ), mean square
error (MSE), root mean square error (RMSE) and mean absolute
deviation (MAD) were used. Results showed that the GMDH-type and
MLP-NN models had larger R’ values than the multiple regression
and RBF models. The results of GMDH model were very encouraging
and congruent with the experimental results. In general, the GMDH-
type-NNs models provided more reliable predictions than the
artificial neural networks (ANNs) and regression-based models.

© 2014 Sjournals. All rights reserved.
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1. Introduction

CEC is the amount of negative charge in soil that is available to bind positively charged ions (cations). Cation
exchange capacity is used as a measure of fertility, nutrient retention capacity and the capacity to protect
groundwater from cation contamination (Sarmadian and Taghizadeh Mehrjardi, 2008).

Although CEC can be measured directly, its measurement is especially difficult and expensive in the soils.
Pedotransfer functions (PTFs) provide an alternative by estimating CEC from more readily available soil data.in
recent years, various PTFs have been developed to estimate CEC from basic physical and chemical soil properties
(Amini et al., 2005; Seybold et al., 2005 and Sarmadian and Taghizadeh Mehrjardi, 2008). Multiple linear regression
analysis is generally used to find the relevant coefficients in the model equations. However, models developed for
one region may not give adequate estimates for a different region (Wagner et al., 2001). Several researchers have
attempted to predict CEC from clay and organic carbon contents alone, using multiple regression (Drake and
Motto, 1982; Sahrawat, 1983; Bell and Van Keulen, 1995). A neural network is an attempt to build a mathematical
model that supposedly works in an analogous way to the human brain. A network consists of many elements or
neurons that are connected by communication channels or connectors. These connectors carry numeric data
arranged by a variety of means and organized into layers (Minasny and McBratney, 2002). A NN is an adaptable
non-linear data transfer structure that can learn the relations between input and output data while being
insensitive to measurement noise (Hecht-Nielsen, 1990).

The group method of data handling (GMDH) was used to develop PTFs in some previous soil studies
(Pachepsky and Rawls, 1999). Grouping improved the accuracy of PTFs in most cases, probably because of
similarities in PTF relations within groups (Pachepsky and Rawls, 1999). The GMDH is aimed at identifying the
functional structure of a model hidden in the empirical data (lvakhnenko, 1971). The main idea of the GMDH is the
use of feed-forward networks based on short-term polynomial transfer functions whose coefficients are obtained
using regression combined with emulation of the self-organizing activity behind NN structural learning (Farlow,
1984). The GMDH was developed in complex systems for the modeling, predicting, identifying, and approximating.
It has been shown that, the GMDH is the best optimal simplified model for inaccurate, noisy, or small data sets,
with a higher accuracy and a simpler structure than typical full physical models (Ghanadzadeh et al., 2012). To
avoid the limitations of ANNs, a vapor-liquid equilibrium (VLE) prediction method was developed using the GMDH
algorithm (Nariman-Zadeh, 2007; Ketabchi et al., 2010).

The general purpose of this research is predicting of CEC using the GMDH model and genetic algorithm. This
model was compared with other ANNs such as the MLP and RBF networks and regression-based models.

2. Materials and methods

2.1. Study area

This study was conducted in Guilan province in north of Iran, as a part of Gorgan-Rasht tectonic zone. The
geology of the area is still poorly known, because of its location in rainy forest and dense topography. Geologically,
the region is composed of Quaternary Caspian deposits and mainly of Jurassic and Cretaceous volcanic rocks
(Anells et al., 1975). The study area located between 37° 5’ to 37° 15" northern latitude and 50° 0" to 50° 10’
eastern longitude (Figure 1).

2.2. Soil sampling and laboratory analysis

In the present study, 150 soil samples were collected from different horizons of 48 soil profiles located in
Lahijan, Guilan Province, in the north of Iran. Soil textural distribution is presented in Figure (2). After removing
large stones, the soil samples were air-dried and passed through a 2 mm (10 mesh) sieve. Particle size distribution
was determined by the hydrometer method (Gee and Or, 2002). Soil pH was measured in 0.01 M CaCl, in 1:2 soil:
solution (Thomas, 1996). Organic carbone (OC) was determinate according to the Walkley—Black wet oxidation
method (Nelson and Sommers, 1996). CEC was determined by saturation with 1 M ammonium acetate (NH40Ac)
at pH=7.0 (Sumner & Miller, 1996).
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Fig. 1. Position of sampling area in Lahijan, Guilan province.
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Fig. 2. Particle-size distribution of the 150 soil samples (train and test data).
2.3. Multivariate regression

The most common method used in estimation PTFs is to employ multiple linear regressions. For example:
Y =aX1l+bX2+cX3+... (1)
Where Y is depended variable, Xn is in depended variable and a, b, ... are coefficients.

2.4. Artificial neural network

An ANN, by means of its architecture, attempts to simulate the biological structure of the human brain and
nervous system (Erzin et al., 2008). Artificial neural networks are the preferred tool for many predictive data
mining applications because of their power, flexibility, and ease of use. ANNs used in predictive applications, such
as the multilayer perceptron (MLP) and radial basis function (RBF) networks, are supervised in the sense that the
model-predicted results can be compared against known values of the target variables (Ripley,1996).

2.5. Group method of data handling (GMDH)

Using the GMDH algorithm, a model can be represented as a set of neurons in which different pairs of them
in each layer are connected through a quadratic polynomial and, therefore, produce new neurons in the next layer.
Such representation can be used in modeling to map inputs to outputs. The formal definition of the identification

A

of problem is to find a function, f , that can be approximately used instead of the actual one, f , in order to

Y X =X, X, X;,--+, X
predict output Yfor a given input vector (Xl’ 278 ”) as close as possible to its actual output y.
Therefore, given number of observations (M) of multi-input, single output data pairs so that

Vi = f (%0 X0 X0 X0 ) (1 =123+, M) 2)
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It is now possible to train a GMDH-type-NN to predict the output values i for any given input vector

X = (Xi17 Xz Xigs® s Xin), that is

¥i = 1?(Xil’Xiz’xisf”'fxin)(i=:|~213"""\/|) 3)

In order to determine a GMDH type-NN, the square of the differences between the actual output and the
predicted one is minimized, that is

Zzl[f(xil,xiz,...,xi)—yi]z—>min o

The general connection between the inputs and the output variables can be expressed by a complicated
discrete form of the Volterra functional series (lvakhnenko, 1971) in the form of

y=a,+ zrzlaixi + Zinzlzrjlzlaii XiX; +z:=1zrj]:1ZE:1aiijiXixk T (5)

Where is known as the Kolmogorov-Gabor polynomial (lvakhnenko, 1971). The general form of mathematical
description can be represented by a system of partial quadratic polynomials consisting of only two variables
(neurons) in the form of equation (6).

)“/:G(xi,xj):a0+a1xi+aﬁxj+a3xixj+a4xi“+a5xj?--- (6)
In this way, such partial quadratic description is recursively used in a network of connected neurons to build

a.
the general mathematical relation of the inputs and output variables given in equation (4). The coefficients ' in
equation (5) are calculated using regression techniques. It can be seen that a tree of polynomials is constructed

G.
using the quadratic form given in equation (5). In this way, the coefficients of each quadratic function ' are
obtained to fit optimally the output in the whole set of input—output data pairs, that is

M
"y —G,)?
E=Z'—1(T\'/| ) —s min

(7)
In the basic form of the GMDH algorithm, all the possibilities of two independent variables out of the total n
input variables are taken in order to construct the regression polynomial in the form of equation (5) that best fits

L 1=12,... M) . ) o
the dependent observations (y" 12, ) in a least squares sense. Using the quadratic sub-expression in
the form of equation (5) for each row of M data triples, the following matrix equation can be readily obtained as

Aa=Y (8)
Where a is the vector of unknown coefficients of the quadratic polynomial in equation (5).
T
a=1{a,,a,a,,a,4a,,a o) g Y=Y Ve Y (10)
Here Y is the vector of the output’s value from observation. It can be readily seen that
_ ) 5
1 X, Xq  XpXyy X, X
2 2
A 1 Xy, Xpq  XppXpq  Xpp, Xy
2 2
1 Xup Xug XwpXmg  Xwp Xwg |

(11)
The least squares technique from multiple regression analysis leads to the solution of the normal equations in
the form of

(AT AV-L AT
a=(ATA)ATY 12)
The multivariate regression (for PTF model), MLP, RBF and feed-forward GMDH-type NN for CEC was

constructed using an experimental data set. A random sample selection of database is given in Table 1. The data
was divided into two parts: 70% (110 points) was used as training data, and 30% (40 points) was used as test data.
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Table 1
Statistics of the training and test data sets.

pH ocC Clay Silt Sand CEC
Train Data (110)
Mean 4.22 1.48 29.31 23.10 47.36 20.70
Standard Error 0.043 0.140 1.265 0.905 1.686 0.942
Standard Deviation 0.447 1.473 13.272 9.492 17.680 9.883
Variance 0.200 2.171 176.144 90.102 312.569 97.669
Skewness 0.519 1.756 0.874 1.139 -0.485 1.306
Kurtosis 0.609 3.440 0.040 0.919 -0.903 1.584
Minimum 33 0.04 8.88 8.72 10.24 7
Maximum 5.6 6.7 62.72 54.1 80.56 52
Test Data (40)
Mean 4.07 1.12 36.70 21.29 42.02 22.95
Standard Error 0.060 0.201 2.748 1.188 2.996 1.360
Standard Deviation 0.379 1.270 17.378 7.514 18.949 8.604
Variance 0.144 1.612 301.999 56.458 359.077 74.028
Skewness 1.652 1.409 0.362 0.597 0.105 0.232
Kurtosis 3.394 0.732 -1.537 0.2698 -1.650 -1.419
Minimum 3.58 0.11 14.1 10.1 15.3 10.8
Maximum 5.2 4.6 62.3 42.5 69.8 40.4

2.6. Assessing models accuracy and reliability

In order to investigate the reliability of the proposed method, the accuracy of the model was determined
using coefficient of determination (RZ), mean square error (MSE), root mean square error (RMSE) and mean
absolute deviation (MAD) which are defined as follows:

2
RZ _ [COV(Yi(actual) ’Yi(model))]

Var(Yi(actual) )-var(Y; (model) )

M 1/2 (13)

RMSE = Zi:o (Yi(mOdeU _Yi(acutual))z
M
MSE = £&=i=0 i (model) i (acutual)
. (15)
M

MAD = Zi:O‘Yi(model) _Yi(acumab
v (16)

3. Results and discussion

In the present study, after the learning and training with the models, the output (CEC) is generated. The
statistics of the complete dataset (train and test data) are given in Table 1. The CEC content was predicted using
multivariate regression (for PTF model), MLP, RBF and feed-forward GMDH-type NN. In this way, genetic algorithm
(GA) is arranged in a new approach to design the whole architecture of the GMDH-type-NNs. It provides the
optimal number of neurons in each hidden layer and their connectivity configuration to find the optimal set of
appropriate coefficients of quadratic expressions to model CEC. Scatter plot matrix between variables (studied soil
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properties) are given in Figure (3). As expected, the correlations between the sand content and other soil
properties were all negative.
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Fig. 3. Scatter plot matrix of studied soil properties.

CEC

An ANN, by means of its architecture, attempts to simulate the biological structure of the human brain and
nervous system (Hagan, et al., 2002). The structure and architecture of MLP, RBF and GMDH-type-NN models are
presented in Figure (4). The architecture tab is used to specify the structure of the network (Ripley, 1996). This
pattern has proved to be useful when modelling input-output relations. Automatic architecture selection builds a
network with one hidden layer. Automatic architecture selection uses the default activation functions for the
hidden and output layers (Haykin, 1998). Specify the minimum and maximum number of units allowed in the
hidden layer, and the automatic architecture selection in order to compute the best number of units in the hidden
layer. The usage of a number of hidden layers in the ANN depends on the degree of complexity in the pattern
recognition problem, and one or two hidden layers are found to be quite useful for most problems (Sonmez et al.,
2005). The best structure in GMDH were reached with two hidden layers with 150 generations, cross over
probability of 0.9 and mutation probability of 0.1, to model CEC. The developed GMDH NN was successfully used
to obtain a model for calculating CEC (Table 2). The optimal structures of the developed NN with 2-hidden layers
are shown in Figure (4). The “cbbcaedd” are corresponding genome representations for the CEC, in which a, b, c, d
and e stand for pH, Organic carbon (OC), Clay, Silt and Sand respectively. All input variables were accepted by the
models.
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Fig. 4. The structure of (a) multilayer perceptron (MLP) neural network, (b) radial basis function (RBF) neural
network and (c) developed structure of GMDH-type-NN model for the ternary system, a, b, ¢, d and e stand for pH,
Organic carbon (OC), Clay, Silt and Sand respectively.

When using GMDH- NN and regression models to predict the CEC, the relations between characteristics need
to be described by well-defined equations. Multiple linear regressions equation for PTF model and polynomial
equations of the GMDH model for CEC prediction were presented in Table 2. It can be shown that these models
are more reliable in comparison with ANN (MLP and RBF) models. The GMDH-type-NN provides an automated
selection of essential input variables, and builds polynomial equations for the modeling. This polynomial equation
shows the quantitative relationship between input and output variables (Table 2). Our proposed models behavior
in prediction of CEC demonstrated in Figure (5). This Figure shows plot of the experimental data and GMDH-NN
model. This diagram demonstrates that the predicted values are close to the experimental values, as many of the
data points fall very close to the diagonal line.

The scatter plot of the measured against predicted CEC for the train and test data set is given in Figure (6) for
the whole models. As depicted in Figure (6) RBF NN model cannot predict greater contents and most contents
tended to CEC below 30 Cmol, Kg’l. The MLP NN model shows slightly better results as comparing to GMDH
model in train data, but GMDH model had the best results in test data. The statistical results of the comparisons
are given in Table 3, which shows that the GMDH-type and MLP-NN models had larger R’ values than the multiple
regression and RBF models. Furthermore, these models had lowest RMSE, MSE and MAD indexes in comparison
with multiple regression and RBF models. The absolute value of MD should always be small, and indicate a high
model performance and are a measure of the overall error of the estimation (Zacharias, 2007). Amini et al. (2005)
reported that in prediction of CEC, the neural network-based models provided more reliable predictions than the
regression-based PTFs.
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Fig. 5. Plot of CEC against data set number to illustrate the prediction of the experimental data using the
GMDH model; (0) experimental points; (+) calculated points.

Table 2
Pedotransfer function (PTF) and polynomial equations of the GMDH model for Cation exchange
capacity (CEC) in this study.

Model Equation
PTF CEC =-8.988-0.15 (Sand) + 0.408 (Clay) + 2.143 (OC) + 5.131 (pH)
GMDH CEC =-2.8699 + 0.9501 Y, + 0.2811 Ys- 0.1014 Y,> - 0.0770 Y5’ +0.1772 Y, Ys

Y1 =8.5426 +0.1779 (Clay) — 0.1291 (Silt) - 0.0016 (Clay)’- 0.0034 (Silt)* + 0.0199 (Clay) (Silt)
Y2 = 46.1905 + 0.3956 (OC) - 0.7762 (Sand) +0.4278 (OC)? + 0.0041 (Sand)? - 0.0195 (OC) (Sand)
Y3 =1.7759 - 2.8270 (OC) +0.7143 (Clay) +0.4937 (OC)? - 0.0034 (Clay)® + 0.0975 (OC) (Clay)

Y4 =1.0723 + 0.4940Y; + 0.3398 Y2 +0.0296 Y,* +0.0282 Y,* - 0.0538Y, Y,
Y5 = 160.6425 - 71.2619 Y; - 0.8948 (pH) +7.9456 Y5> + 0.0046 (pH)? + 0.3895 Y; (pH)
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Fig. 6. Performance of models for the train and test dataset: measured vs. predicted CEC (Cmol, Kg'l) with
reference to the 1:1 line. (a) and (b) for GMDH neural network model, (c) and (d) for MLP neural network, (e) and
(f) for Pedotransfer function (PTF) model, (g) and (h) for RBF neural network model.
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Table 3

Evaluation indices for the Group Method of Data Handling (GMDH), multilayer perceptron (MLP), Pedotransfer
function (PTF) and radial basis function (RBF) models.

2

Data R RMSE MSE MAD
1 GMDH Training 0.90 3.13 9.83 2.48
Testing 0.92 2.47 6.08 2.01
2  MLP Training 0.93 2.54 6.46 2.05
Testing 0.90 2.84 8.07 2.12
3 PTF Training 0.73 5.13 26.29 3.72
Testing 0.90 2.57 6.58 1.96
4 RBF Training 0.43 7.40 54.72 5.73
Testing 0.77 4.11 16.89 3.29

Clay and OC are main factors for predict of CEC. Figure (7) shows a 3D scatter plot of OC, Clay, and CEC from
study soil samples. The results of Sahrawat (1983) in Philippine soils and Bell and van Keulen (1995) in Mexico soils
showed that greater than 50% of variation in CEC could be explained by the variation in clay and OC content. Amini
et al., (2005) reported that the relationship between CEC and clay and organic matter appeared to be dominantly

linear.

oy~

O
W W

o o = N

Cl

40

60

20
o 10 CEC

Fig. 7. A 3D scatter plot showing Organic carbon (OC), Clay (Cl), and Cation exchange capacity (CEC) from
study soil samples.

4. Conclusions

In this study, PTF, ANNs (MLP and RBF) and feed-forward GMDH-type NN models developed using
experimental CEC data. Then the results were compared with the experimental data. Despite the complexity of the
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system studied, the GMDH model permits a good prediction of CEC. Thus, the GMDH model is suitable for
predicting the CEC. The agreements between the experimental and calculated data were found to be excellent.
This paper concluded GMDH model as being more effective and accurate in predicting of CEC than other ANNs and
regression-based models.
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