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A B S T R A C T 

 

Measurements of infiltration rate (IR) in the field are costly, 
time consuming, and relatively cumbersome. IR are sensitive to some 
soil properties, thus the cokriging with auxiliary variables can 
sometimes improve estimates for less density sampled primary 
variable. The objectives of this study were to determine the spatial 
relationships between IR and some soil properties affecting IR and to 
identify possibility of using cokriging method. Infiltration rate test 
were conducted using double ring infiltrometers until steady state.75 
field measured IR were obtained at a nearly regular grid spacing of 
10 m. The correlation coefficient between IR and OM and silt were 
comparatively good. Semivariogram and cross-semivariogram of 
these variables with moderate to strong spatial dependence were 
fitted into the spherical model. range spatial dependence above 
mentioned soil properties were generally greater than 24 m. The 
cross validation analysis showed that both kriging and cokriging 
provided reasonable estimates for IR. Differences among krigin and 
cokriging with using OM as auxiliary variable were relatively small. 
However using silt content as auxiliary data for the estimation of IR in 
cokriging method was consistently more effective than kriging on IR 
alone, and could reduce prediction error by 15% as compared kriging 
method. 
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1. Introduction 

Infiltration is a dominant process controlling crop yields, solute transport, run off and soil erosion. Infiltration 
rate may vary from very low to very high because of variability in the soil physical characteristics. Soil infiltration 
rate is mostly affected by soil texture and soil moisture (Radcliffe and Rasmussen, 2000; Dingman, 2002). 
Moreover soil properties such as infiltration rate change in time and space continuously. There are several causes 
for these changes of soil properties such as pedologic soil formation factor, topography, vegetation, cultivation 
history and variability arising from uneven field management (Tesfahunegn et al., 2011).  

Therefore developing suitable schemes for the design and management of irrigation and drainage systems 
requires sufficient and reliable data of soil and water properties such as infiltration rate (Alemi et al., 1988). 
However since measuring infiltration rate in a field is costly, time consuming, and cumbersome it is difficult to 
estimate infiltration rate values at unobserved site with an acceptable level of accuracy, especially when spatial 
variability of this property is high, thus this requires quantifying the spatial information for infiltration rate 
(Ersahin, 2003).  

Using geostatistics is feasible to characterize and quantify the spatial variability of soil samples, perform 
rational interpolation and estimate variance between the point values sampled in the spatial field by regional 
theory (Zhang et al., 2011). Cokriging uses the spatial information on infiltration rete along with spatial correlation 
between infiltration rate and an auxiliary variable to make estimations on unobserved sites (Ersahin, 2003). In 
contrast to the limited availability of information on infiltration rate, data related to major soil characteristics are 
often much more readily available. 

 Many researchers had applied cokriging methods in determination of spatial variability of soil physical 
properties (Triantafilis et al., 2001; Meul and Van Mirvence, 2003; Millan et al., 2012) and soil chemical properties 
(Wu et al., 2003; Robinson and Metternicht, 2006). They concluded that cokriging was superior to kriging in 
minimizing estimation variance. For example Ersahin (2003) used kriging and cokriging methods for investigation of 
spatial variability of infiltration rate in turkey. The soil bulk density was used as an auxiliary variable in cokriging 
method in this study. Result illustrated that the cokriging method was a suitable technique for estimation of 
infiltration rate. Wu et al. (2006) used organic matter and pH as auxiliary variables to estimate DTPA-extractable 
soil Zn in northern North Dakota. They found that cokriging on Zn(DTPA) using OC and pH as auxiliary variables, 
was consistently more effective than kriging on Zn(DTPA) alone. Moreover cokriging with OC and pH together 
provided additional benefit. The objective of this study were (i) to quantify the spatial structure of infiltration rate 
and soil properties affecting this, (ii) to evaluate the auxiliary soil characteristics can be used to improve 
predictions of infiltration rate, when data for infiltration rate are not available.   

2. Materials and methods 

2.1. Description of study area 

This study was conducted in a near flat agricultural field (2-3% Slope) of about 1ha (85 m×85 m) located in 
Rasht, north of Iran. The climate is temperate with mean annual precipitation of 1200mm, mostly falling in the 
autumn and spring. Minimum and maximum monthly mean temperatures were 6.6 and 25˚C respectively. 
Conventional tillage was performed two years ago with a moldboard plow at a depth of 30 cm. 

2.2. Soil sampling and analysis techniques 

The field was intensively sampled on a nearly regular grid spacing of 10 m in October 2012 (Fig. 1). Soil 
samples were obtained from three points near each site within the 0-30 cm soil surface layer (plow pan). All 75 
samples were analyzed in the laboratory for sand, silt, and clay contents by using the hydrometer method (Gee 
and Bauder, 1986), organic matter content (OM) was analyzed using the Walkley-Black method (Nelson and 
Sommers, 1982), mean weight diameter (MWD) of soil aggregates by using wet sieving (Kemper and Rosenau, 
1986), infiltration rate (IR) tests were done with double-ring infiltrometers until final (steady state) IRs was reached 
(Klute and Dirksen, 1986) for each site before soil sampling, In addition soil porosity was determined from Particle 
density and Bulk density with pycnometer and cylinder methods, respectively (Jacob and Clark, 2002).  
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Fig. 1. The distribution of representative soil sampling points in the study field. 

2.3. Statistical analyses 

Data analyses for each variable were done in four step (i) normality tests were applied (Shapiro-Wilks) and in 
the variables, do not have normality distribution, log-transformation was performed; (ii) distributions were 
describe with classical statistics (iii) correlation between infiltration rate and other soil properties were 
determined; (iv) soil properties highly (significant) correlated with infiltration rate were selected as potential 
auxiliary variable for use in the cokriging procedure. 

2.4. Geostatistical analysis 

Before cokriging, the spatial variability of correlated variables was modeled with the aid of semivariograms 
and cross-semivariograms, which was determined to ascertain the degree of spatial variability. A semivariogram 
shows auto-correlation as a function of distance, which was defined as following equation,  
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Where, γij is the semivariance (when i = j) with respect to random variable Zi; h is the separation distance; 

N(h) is the number of pairs of Zi (xk) and Zj (xk) in a given logged distance interval of (h + dh). When i ≠ j, γij is the 
cross-semivariance which is a function of h; and Zi(xk) and Zj(xk) are the observed principle and auxiliary values at 
xk location, respectively (Ersahin, 2003). 

 Several semivariogram and cross-semivariogram were evaluated to choose the best fit with the data. 
Spherical model were fitted to both experimental semivariograms and cross-semivariograms was done on the 
basis of regression (r2) and residual sum square (RSS) (Robinson and Metternicht, 2006). The parameter of the 
model fitted to the experimental semivariograms and cross-semivariograms can be used with the data for 
prediction at points or over blocks. Cokriged predictions are a weighted average of the principle and auxiliary data, 
at the unknown point or block, so cokriging with secondary variable has the potential to improve estimates of 
primary variable, which was defined as following equation, 
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Where Z*(x0) is the estimated value at x0 location; λi and λj refers to weighing factors of principle and 
auxiliary variables, respectively; and n and m are the numbers of principle and auxiliary values (Isaaks and 
Srivastava, 1989).                                      

Accuracy of interpolation was evaluated through a Cross-validation process using the Mean Absolute Error 
(MAE) (Millan et al., 2012) and General Standard Deviation (GSD) (Isaaks and Srivastava, 1989). 
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Where Z(xk) and Z*(xk) are the observed and estimated value at xk location, respectively;Ž(x) is the mean of 

total observed values. The GS+ software package (Gamma Design Software, 2001) was used for performing 
geostatistical analysis. 

3. Results and discussion 

The descriptive statistics of the soil properties in the study field showed high skewness for some of the 
parameters (Table1). The data for MWD, porosity and silt had low to moderate skeewness, but data for IR, OM, 
clay and sand were far from normally distributed. For IR the SD is high and data were strongly positively skewed. 
Highly skewed parameters indicate that these variables have a local distribution. The reason for soil parameters 
being distributed abnormally may be associated with differences in management practices, land use, vegetation 
cover, and topographic effects (Tesfahunegn et al., 2011). Iqbal et al. (2005) reported that organic matter, clay and 
sand content were skewed significantly. Also log-normal distribution of the infiltration rate was reported by Sisson 
and Wieranga (1981) and Haws et al. (2004). A common log-transformation was successful in normalizing the data 
to reduce of skewness. By using the logarithm transformed variables we make ensure that the variables 
approximately have Gaussian distribution.  

Variability in distribution of parameters is measured by coefficient of variation (CV). Base on the CV values, 
infiltration rate was the most variable soil measured parameter, with CV greater than 35%. Ersahin (2003) and 
Shukla et al. (2004) indicated that hydraulic properties showed the largest variability. The results are possibly 
related to the soil tillage practices caused the maximum change IR values at field measurement. MWD, OM, clay 
and sand were moderately variable, with CV between 15 and 35%, while porosity and silt were least variable 
(CV˂15%).  

 
Table 1 
Descriptive statistics corresponding to each variable. 

Correlation coefficients 
with IR 

CV 
(%) 

Kurtosi
s 

Skewnes
s 

SD Mea
n 

Max Min Unit Soil Variable 

1.000 88.49 0.07 1.07* 7.06 7.9 26.28 0.33 cm h-1 IR 
-0.153 16.91 0.47 0.61* 5.29 32.0 48.00 22.00 % Clay 

0.273 7.26 -0.39 0.34 4.33 59.7 70.00 51.00 % Silt 

0.054 31.10 0.15 0.74* 2.86 9.2 18.00 5.00 % Sand 
0.174 7.50 -0.20 0.36 3.77 50.3 60.00 43.20 % Porosity 
-0.109 31.20 -0.83 -0.06 0.47 1.3 2.25 0.61 mm MWD 
0.305* 26.86 0.28 0.69* 0.66 2.4 4.29 1.30 % OM 

*Significant at the 0.05 probability level; Min: Minimum; Max: Maximum SD: Standard   deviation; CV: Coefficient of variation; IR: 
Infiltration rate; MWD; Mean weight diameter; OM: Organic matter. 

 
The correlation among IR and other properties and the related level of significant are listed in Table1. The 

correlation coefficients between soil properties investigated and IR were not statistically significant in all case. The 
weak correlation between IR and soil properties might be a hint to management process and root channels. 
Virtually, noting significant correlation between IR and other variables, indicating that these variables explained 
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different portions of the variability in IR. The liner correlation between IR and OM was 0.305 and significant 
(P˂0.05), while the correlation between IR and silt was comparatively good. No significant correlation between IR 
and percentage of sand and OM and significant correlation between IR and silt were reported by Ersahin (2003). 
Reynolds and Zebchuk (1996) concluded that hydraulic properties were primarily affected by a well-developed and 
stable soil structure, and not by the soil texture, organic carbon, or surface topography. Rasse et al. (2000) found 
that differences in IR could be due to the presence of root channels and macro porosities. In other research 
Jorgensen et al. (2002) reported vertical continuity of the macro pore sequences would intuitively seem to be an 
important factor affecting IR. 

 
Table 2 listed the semivariogram and cross-semivariogram parameters for the IR and OM and silt percentage 

that were the most related to IR. The cross-semivariogram between IR and other soil properties shows little spatial 
co-variability (data not shown), which echoes the lack of relationship and near zero correlation coefficient (Table 
1). According to the higher regression (r2) and lower Residual sum square (RSS), experimental semivariogram and 
cross-semivariogram of soil properties were best fitted to spherical model (Fig, 2). Semivariance increased with 
distance between samples (lag distance) to a constant value (sill) at a given separation distance (the range of 
spatial dependence) for spherical model (Isaaks and Srivastava, 1989). To compare the spatial dependence of 
different variable can use the ratio of the nugget and the sill after fitting models. This ratio was used to define 
three classes of spatial dependence for measured variables (kilic et al., 2004).  

A moderate spatial dependence (25˂C0/(C+C0)˂75%)  were detected for IR, OM and co-variable of this 
properties, while silt and co-variable of IR and silt had the strong spatial dependence (C0/(C+C0)˂25%). This results 
indicate that nugget effect were higher at IR and OM as compared to silt content. The moderate spatial 
dependence with high nugget effect for IR and OM might be hint to the tillage effect and cultivation. Cambardella 
and Karlen (1999) reported that spatially dependent may be controlled by intrinsic variations in soil characteristics 
such as mineralogy, and extrinsic variation such as tillage. In the study that conducted by Deurer et al. (2003),  the 
macropore networks are the primary effect of  heterogeneity of the infiltration rate, a decreased macropore 
density at the lower depths might also result in decreased variance and increased spatial dependence of the field 
measurement IR. 

A range of spatial variability indicated the distance beyond of semivariance become constant and the soil 
samples can be assumed to be spatially independent. In other hand, within the range, the measurement of the 
variable are correlated with each other. The range is important in term of controlling upper limits of the spatial 
dependencies prediction processes. The resulting semivariograms indicated a range of about 24 m for IR and rang 
of about 52 and 58 m for OM and silt content, respectively. The range of cross-semivariograms differed with the 
level of auto-correlation variables were used. The cross-semivariogram of IR against OM showed that IR was 
correlated with OM up to the range of 36 m within they were moderately spatial dependent, while, the cross-
semivariogram of IR against silt revealed a strong spatial dependence up to the range of 38 m.  Generally, soil 
properties which are sensitive to management practices have a shorter geostatistical range (Ozgoz, 2007). Also 
Tesgaye and Hill (1998) reported that lower range could be due to a much sampling interval of 1 m in a relatively 
small area. Vieira et al. (1981) found a range of 50 m for 1280 field measured IR values at a field scale. A study 

Table 2 
Semivariogram and cross-semivariogram parameters with prediction error values. 

GSD MAE C0/(C0+C) Class RSS R2 Range 
(m) 

C0+C C0 model Variable 

         Semivariogram  
0.77 4.87 32.4 M 2.5×10-3 0.95 24.0 0.7700 0.2500 Spherical IR (cm h

-1
) 

0.05 2.42 16.4 S 9.3×10-1 0.99 58.0 20.450 3.3600 Spherical Silt (%) 

0.15 0.37 41.4 M 4.9×10-5 0.96 52.0 0.0755 0.0313 Spherical OM (%) 
         Cross-Semivariogram  

0.74 4.85 20.7 M 3.1×10-5 0.98 36.0 0.0290 0.0060 Spherical IR / OM 

0.68 4.18 15.2 S 9.2×10-7 0.97 42.0 0.0119 0.0018 Spherical IR / Silt 



A. Yekzaban et al. / Agricultural Advances (2014) 3(6) 186-193 

  

191 

 

  

conducted by Cemek et al. (2007), and Sobieraj et al. (2004) also revealed spatial dependence in surface saturated 
hydraulic conductivity which is similar to IR, with range values of 17 and 25 m, respectively.  

Kriging and cokriging procedures were used along semivariograms and cross-semivariograms to estimate IR 
values at unsampled points. 

The cokriging procedure was applied to determine whether any advantage could be gained over kriging. The 
best auxiliary variable was determined using the cross validation. With cross validation, the prediction 
performance is checked by dropping actual data and estimating the properties of the location from the co- 
variables and neighboring data. Perfect cross validation agreement between true and predicted values would be 
reflected in having the lowest (near zero) mean absolute error (MAE) and general standard deviation (GSD) value. 

This result showed that the MAE and GSD calculated from the cokriging with OM were slightly less than the 
MAE and GSD calculate from kriging method (Table 2), so indicated that the cokriging had no advantage over 
kriging when OM used as auxiliary variable. However using silt content as auxiliary data for the estimation of IR in 
cokriging method was consistently more effective than kriging to improve estimates of IR, and could reduce MAE  

 
Fig. 2. Experimental semivariogram and cross- semivariograms of soil variable. 

 
by 15% as compared kriging method. many researcher have reported similar results to those above, for example 
Zhang et al. (1992) showed that with limited data, cokriging as compared with kriging, significantly improve 
estimation of particle size fraction in the areas of the field when using the reflectance of near infrared band as the 
auxiliary variable. Also Tarr et al. (2005) by means of cokriging method tested many auxiliary parameters, such as 
clay, soluble calcium, soluble magnesium, and depth of bed rock. They reported that clay content as auxiliary 
parameter was more suitable for surveying soil salinity in cokriging method. Finally, this study illustrated that the 
moderate spatial relationship between IR and silt content helped maintain the spatial information in IR at 
unsampled point. 

4. Conclusion 

Making successful design of the irrigation and drainage systems is one of the goals of the understanding the 
distribution of infiltration rate. This experiment illustrated the possibility of using kriging and cokriging methods. 
The obvious advantage of using such a predictive method arises from the fact that a large number of field 
measurements of infiltration rate are costly, time consuming, and cumbersome, whereas the method provides a 
means for predicting reliably the best estimate possible of the representative value from limited in situ 
measurement. The low relationship between IR and some soil properties can be attribute to the influence of other 
factor that were not able measured, such as tillage effect, root channels and cultivation. These factor causes 
infiltration rate change abruptly in space. Percentage of OM and silt were moderately correlated to IR within 
distances ranging from 36 to 42 m. The results of cross validation showed that cokriging no advantage over kriging 
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when OM use as auxiliary data. It was also conducted that silt content as an auxiliary data in the cokriging method 
is preferable to the OM content. This analysis can be applied in making decisions regarding agricultural and 
environmental land management.  
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