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A B S T R A C T 

 

For a less densely sampled Area, Lognormal ordinary cokriging 
(LnOCK) with auxiliary variables can sometimes improve estimates. In 
this study for groundwater quality assessment of Azarshahr plain 
aquifer- East Azerbaijan province- Iran (one of the Uromia lake sub-
basins) 39 samples have been gathered. Due to slight sample 
accumulation, geostatistics was utilized for accuracy rising in Chloride 
concentration prediction of study area. For this purpose, three steps 
were designed; At first, spatial concentration of chloride has 
modelled by Lognormal ordinary kriging (LnOK), then three different 

covariant (EC, Ca


and Mg


) that their quantities had more than 
90% correlation to chloride, has been chosen for spatial prediction of 

its concentration separately and in third step EC and Ca


 have 
used together as covariates to evaluate the spatial prediction. 
Outcomes have shown that Lognormal ordinary cokriging (LnOCK) 

using Ca


as an auxiliary covariant reveals more efficient results; 
With Mean error about 0.04 and RMSE about 0.26. Whereas adding 

more data set as excess covariant (Ca


and EC, together) reduced 
the model precision. Drown maps finally showed that Chloride 
concentration rises from the South-East to North-West in study area. 
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1. Introduction 

Nowadays, groundwater is a major source of supply for domestic and agricultural purposes; especially in arid 
and semi-arid regions. Groundwater systems possess features such as complexity, nonlinearity, being multi-scale 
and random, all governed by natural and/or anthropogenic factors, which complicate the dynamic predictions 
(Nourani, 2012). Huge quantities of groundwater, particularly from the shallow aquifers, are used for potable use 
and irrigation in Iran. In the absence of adequate surface water in the dry season; irrigation becomes heavily 
dependent on groundwater (Moasheri et al., 2012). Understanding the behavior of the groundwater body and its 
long term trends are essential for making any management decision in a given watershed (Reghunath et al., 2005). 
Therefore, having a deep knowledge and insight on the groundwater system seems necessary for optimum 
exploitation of water. It is now recognized that quality of groundwater is just as important as quantity (Todd & 
Mays, 2005). 

Pollution of groundwater recently emerged as a globally growing environmental problem due to the 
increasing demands of groundwater for drinking and agricultural purposes. In the other hand groundwater can 
affects water quality in many regions because of its salinity. In many management works, it is necessary to know 
the spatial and temporal behavior of groundwater. Water quality measured according to some parameters that 
chloride is one of them, so it is important to measure chloride in irrigation and potable water for suitable 
management and yield maximization (Rostami Zad et al., 2011). Chloride occurs in all natural water in widely 
varying concentration. The chloride content normally increases as the mineral content increases. Upland and 
mountain supplies usually are quite low in chloride, whereas rivers and groundwater usually have considerable 
amount (Sameer et al., 2010). Chloride in groundwater derives from both natural and anthropogenic sources, such 
as runoff containing road deicing salts, the use of inorganic fertilizers, landfill leachates, septic tank effluents, 
animal feeds, industrial effluents, irrigation drainage, and seawater intrusion in coastal areas (Sameer et al., 2010).  

The variations of groundwater quality over years in many parts of Iran, suggest a precise and detailed study 
to be undertaken to elucidate the behavior of groundwater chemistry fluctuations. A very useful tool for analyzing 
such processes is geostatistic (Ahmadi and Sedghamiz, 2007). Geostatistic refers to the sub-branch of spatial 
statistics in which the data consist of a finite sample of measured values relating to an underlying spatially 
continuous phenomenon. Examples include: heights above sea-level in a topographical survey; pollution 
measurements from a finite network of monitoring stations; determinations of soil properties from core samples 
and etc. Originally, the term geostatistic was coined by Georges Matheron and colleagues at Fontainebleau, 
France, to describe their work addressing problems of spatial prediction arising in the mining industry (Diggle and 
Ribeiro Jr, 2007).                                                     

In these years geostatistic plays an important role in distributed models and spatial analyzing for instant 
Voudouris et al. (2004) described methods for defining the areal salinity distribution by seawater intrusion by 

geostatistic; they collected and analyzed samples from two representative aquifers of Greece, T.D.S., Cl


 

concentration, Br


 concentration, and analysis of the salinity factor and hydrochemical sections had done. They 
computed Experimental and theoretical semivariograms of the selected parameters. Maps had shown 
geographical distribution, using the ordinary kriging method. From these maps, the seawater intrusion zone had 
defined. Lei et al. (2008) had employed multivariate statistical and geostatistical methods to identify spatial 
variability of trace elements in Agricultural Soils in Dongguan City, Guangdong, China; they collected  samples from 
agricultural fields, including vegetable and orchard soils in the city, and analyzed eight heavy metals (As, Cu, Cd, Cr, 
Hg, Ni, Pb, and Zn) and other items (pH values and organic matter) , to evaluate the influence of anthropic 
activities on the environmental quality of agricultural soils and to identify the spatial distribution of trace elements 
and possible sources of trace elements, results had shown that the source of pollution derived from three origin 
(natural source, industrial and traffic pollution sources and long-term anthropic activities). Hani (2010), tested the 
concentrations of As, Hg, Co, Cr and Cd for soil samples in Kaveh industrial city, and analyzed their spatial patterns 
by the semivariogram approach of geostatistic and geographical information system technology. Results of study 
was helpful for risk assessment of environmental pollution for decision making for industrial adjustment and 
remedy soil pollution. Ghadermazi et al. (2011) put the aim of their study on comparison lognormal ordinary 
cokriging (LnOCK) with lognormal ordinary kriging (LnOK) and lognormal inverse distance weighting (LnIDW) for 
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the spatial prediction of NO3-N in drinking water using pH as an auxiliary variable in LnOCK their study had 
revealed that In terms of mean error (ME) and root mean squared error (RMSE) LnIDW performed much better 
than LnOK for NO3-N. However, LnIDW was consistently less effective than LnOCK using pH as auxiliary variable. 

2. Materials and methods 

2.1. Study area  

 The Azarshahr Plain is one of sub-basins of the Uromia Lake watershed, is located in Azarbaijan province, 
northwest of Iran. The plain is bordered to the east and southeast by volcanic Sahand Mountain and to the south 
by travertine of Ghezeldagh, to the north and west by Aji Chay and Uromia Lake salty flat plain respectively (fig.1). 
The study area is a densely populated area of Iran, with 100 percent of its drinking, domestic and industrial water 
and 80 percent of agricultural water supplied from groundwater resources (Asghari Moghaddam, 1991). The total 
area of the Azarshahr basin and Plain are about 580 km2 and 136 km2 respectively. 

 According to Azarbaijan Regional Water Authority (ARWA) (2009), the Hydrological and meteorological   
properties of study area, are as follow: Average annual precipitation values is about 221/2 mm for a 30 years 
period; whereas its mean evaporation is about 1490mm, shows the important role of groundwater in the study 
area. Mean daily temperatures vary from 0.14ºC in January up to 25.8ºC in July with a yearly average of 13º C and. 

Azarshahr Chay is the main river in the study area, which is originated from Sahand Mountain (east of the 
area) and it inters the plain from east side and through the plain discharges in to the Uromia Lake. The river rarely 
discharges into the Lake due to percolation and evaporation losses, as well as diversion of water for irrigations. 

 
Fig. 1. Geographical location of the study area. 

  2.2. Geological setting 

       Due to geology effect importance on groundwater quality, precise insight is necessary about the geology 
of study area. The study area lies in East Azarbaijan province, which is structurally part of Central Iran unit. It is 
wedged between the Zagros and Alborz mountain systems. The area includes representatives of Jurassic to 
Quaternary age with various movements affecting it, most strongly those of Alpine origin. Pliocene time involved a 
marine regression and a change to continental conditions, mainly lacustrine, coupled with the deposition of clay 
and clastic. Then the Plio-Pleistocene was marked by significant volcanic activity, with lava flows and pyroclastic 
masses associated with the continental conditions of that epoch. 

       Hence, the eastern part of the Azarshahr area is occupied by the extinct Sahand volcano, which is built up 
from a volcanic series of rocks. This massif is surrounded by volcanic sediments called “alluvial tuff”, which were 
deposited around the andesitic core (Moinvaziri et al., 1975). The Sahand alluvial tuff conformably overlies 
Pliocene marls, sandstones and fish-bed layers (the bedrock of the study area). The southwestern part of study 
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area includes Jurassic and Cretaceous limestone with Pliocene travertine, which is believed to be connected to the 
thermal mineral issuing from the Cretaceous limestone as well as from alluvial tuff (Issar, 1969). 

       The alluvial water course and plain deposits of the study area are derived from the erosion of Sahand 
pyroclastic materials, which have transported by water and other transporting agents and deposited in the 
Azarshahr Plain. They are coarse and poorly sorted in the highest parts of the plain and become progressively finer 
and more clayey towards the Uromia Lake, which is flanked by a salty loam and huge clay plug. From geological 
point of view the Quaternary alluvial deposits including water course and plain deposits forming the main water 
bearing layers in the study area. Some of Qanats and springs are originated from alluvial tuffs of Sahand Mountain 
and come up from the boundary of these formations and Pliocene marls and fish-beds. Figure 2 depicts a 
schematic geological view of study area. 

       The alluvial aquifer of the study area has been known for many years as a good aquifer, through Qanats, 
geophysics and well distributed drilled wells. It has been extensively developed for public and agriculture water 
supply and investigated hydrogeologically, particularly in connection with groundwater development. According to 
Azarbaijan Regional Water Authority (ARWA) (2009), 233 deep and 500 shallow active pumping wells, 162 Qanats 
and 6 springs operate in the alluvial aquifer of the plain that imposes stress to the aquifer quantity and quality of 
course. 

 

 
Fig. 2. Geological setting schematic view of study area. 

2.3. Theoretical basis 

The study of groundwater chemistry provides important clues on the geological history of the water bearing 
layers, gives some indication of groundwater recharge, and the velocity and direction of flow patterns and storage 
(Freeze and Cherry, 1979); but it is not always possible to examine every location quality. Therefore, unknown 
values must be estimated from data taken at specific locations that can be sampled. The size, shape, orientation, 
and spatial arrangement of the sample locations are termed the support and influence the capability to predict the 
unknown samples. For Azarshahr study area, gathered samples did not cover all the study area. 

A unique aspect of geostatistics is the use of regionalized variables which fall between random variables and 
completely deterministic variables. Regionalized variables describe phenomena with geographical distribution (e.g. 
elevation of ground surface).This phenomenon exhibit spatial continuity 

The theoretical basis of geostatistics has been fully described by several authors (Chiles, 2012; Diggle, 2007; 
Goovaerts, 1997; Hengl, 2009; Isaaks and Srivastava, 1989; Kitanidis, 1997 and Webster and Oliver, 2001). 

Regionalized variable theory uses a related property called the semivariance to express the degree of 
relationship between points on a surface. The semivariance is simply half the variance of the differences between 
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all possible points spaced a constant distance apart. Semivariance is a measure of the degree of spatial 
dependence between samples (here Chloride concentration  ( . 

The Semi-variogram, γ (h(, can be defined as one half the variance of the differences between the attribute 
values at all points separated by a distance h as follows: 

(h)
2

1

1
( ) [ (X ) Z(X )]

2 (h)

N

i i

i

h Z h
N




  
                                                     (1) 

Where Z(x) indicates the magnitude of variable, and N (h) is the total number of pairs of attributes that are 
separated by a distance h Figure 3 shows the Semivariogram of the Chloride concentration. 

Prior to the geostatistical estimation, we require a model that enables us to compute a variogram value for 
any possible sampling interval. The most commonly used models are Spherical, Exponential, Gaussian, and Pure 
nugget effect (Isaaks and Srivastava, 1989) that in our case Exponential model was the best fitting curve for 
samples. The adequacy and validity of the developed variogram model was tested satisfactorily by a technique 
called crossvalidation. The idea of cross-validation consists of removing a datum at a time from the data set and re-
estimating this value from remaining data using different variogram models (Rostami Zad et al., 2011).  

Fig. 3. Semivariogram of Chloride concentration. 
After model selection we must start the interpolation and prediction process subsequently using Kriging 

interpolation and prediction method in this study. Kriging is given to a class of statistical techniques for optimal 

spatial prediction. Kriging technique is a spatial interpolation estimator Z ( 0X
) used to find the best linear 

unbiased estimator of a second-order stationary random field with an unknown constant mean: 

0

1

(X ) (X )
n

i i

i

Z Z



                                                                                              (2) 

Where Z ( 0X
) is Kriging estimate at location 0X

; Z ( iX
) is sampled value at iX

; i   is weighting factor for 

Z ( iX
(; and i = 1… n in which n denotes to the numbers of samples. 

Kriging uses the semivariogram, in calculating estimates of the surface at the grid nodes. In the kriging 
method, every known data value and every missing data value has an associated variance.  

Based on the semivariogram used, optimal weights are assigned to known values in order to calculate 
unknown ones. Since the variogram changes with distance, the weights depend on the known sample distribution.  

Ordinary kriging is the simplest form of kriging; it uses dimensionless points to estimate other dimensionless 
points, e.g. elevation contour plots. In Ordinary kriging, the regionalized variable is assumed to be stationary. In 

our case Z, at point p, eZ
 (p) to be calculated using a weighted average of the known values or control points:  

(p) (p )e i iZ W Z                                                                                             (3) 

Distance , h ·10-3

γ

0 0.701 1.403 2.104 2.805 3.506 4.208 4.909 5.61 6.312 7.013 7.714

0.284

0.568

0.852

1.136

1.42

1.704

1.988

2.272

2.556

2.84

3.124

Model Binned Averaged
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       Figure 4 shows the map of Chloride distribiution using Ordinary kriging and its crossvalidation graph. 

 

 
Fig. 4. Chloride prediction map using Log normal ordinary Kriging and crosscvalidation graph. 

 
Kriging using information from one or more correlated secondary variables, or multivariate kriging in general. 

The “co-regionalization” (expressed as correlation( between two variables, i.e. the variable of interest, 
groundwater chloride in this case and another easily obtained and inexpensive variable, can be exploited to 
advantage for estimation purposes by the Cokriging technique (Nourani, 2012). Figure 5(a, b, c and d) shows the 
crosscovariance of Chloride with Calcium, Electrical Conductivity, Magnesium and Calcium and Electrical 
Conductivity together as covariant respectively. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Co-variance of Chloride with Ca


, EC, Mg 


and Ca 


and EC together 
 

3. Results and discussion 

39 sample have been collected and analyzed for major elements and also nitrate, fluoride and some trace 
elements from study area. Figure 6 depicts the sampling points in the study area; hydrochemical evaluation 

revealed that Cl


and Ca


 frequency are more than other elements (Table 1), then The Piper diagram mapped 
for samples (Figure7). After that Chloride due to its importance had chosen for distributed modelling; some 
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statistical parameters have derived for chloride (Figure8). For Chloride spatial prediction, geostatistical Analyst 
module have used from Arc map GIS software. At first, Log normal Ordinary Kriging have used, the map of 

prediction and computed crossvalidation has drown. In the second step of study correlation between Cl


 and 

other parameter such as EC, PH and some elements such as Ca


, Mg


, K


and Na


evaluated and revealed that 

EC and Ca


have more correlation than the others (Figure 9). 
 
 
Table 1 
Sample Major Elements Concentration. 

Sample X Y So4(mg/l) Cl(mg/l) Hco3(mg/l) Ca(mg/l) Mg(mg/l) Na(mg/l) 

1 582896 4192518 330.12 324.90 256.20 288.72 29.16 84.64 
2 583631 4191801 41.74 299.91 209.84 118.70 38.77 77.42 
3 587076 4185730 106.86 128.96 158.60 107.47 16.52 58.15 
4 586803 4188658 85.93 92.97 136.64 75.39 14.58 55.74 
5 585453 4189431 77.79 64.98 195.20 97.84 1.94 50.92 
6 583960 4189666 464.53 969.70 246.44 481.30 145.80 111.14 
7 583531 4187539 698.44 1139.65 251.32 425.06 111.78 482.42 
8 582834 4183303 508.07 209.93 373.32 232.58 34.02 173.76 
9 583113 4183390 511.05 284.91 512.40 258.24 54.13 209.90 
10 582150 4184456 509.56 299.91 366.00 279.10 47.33 159.31 
11 581536 4183402 563.37 464.86 561.20 312.88 106.92 226.13 
12 580635 4182186 170.81 199.94 231.80 210.12 9.72 79.83 
13 579854 4184804 301.74 1079.67 390.40 497.24 140.94 159.55 
14 580796 4184738 1278.49 1519.53 341.60 938.34 165.24 260.48 
15 581508 4184819 1621.51 684.79 222.04 565.56 145.80 376.43 
16 582397 4181364 206.86 224.93 536.80 245.41 15.14 128.00 
17 581415 4181233 342.44 249.92 517.28 288.82 29.16 115.96 
18 579762 4182524 301.74 1329.59 512.40 681.70 106.92 210.13 
19 578038 4183214 325.00 1519.53 422.12 721.80 131.22 228.08 
20 577687 4181034 604.07 2249.30 573.40 882.20 199.26 381.25 
21 577796 4181909 447.09 1149.64 673.44 617.54 160.38 193.03 
22 577141 4179695 604.07 479.85 519.72 449.12 48.60 173.76 
23 576440 4181071 1115.70 3039.06 444.08 1154.88 456.84 704.69 
24 578889 4179896 336.63 1084.66 727.12 425.06 140.94 366.80 
25 578293 4179993 252.26 894.72 722.24 537.34 68.04 226.76 
26 580074 4180296 295.93 239.93 1073.60 352.88 97.20 168.95 
27 580377 4179377 394.77 544.83 1098.00 309.22 126.36 357.16 
28 582656 4180267 240.58 209.93 456.28 180.60 47.33 131.73 
29 583926 4179404 137.09 104.97 463.60 144.36 34.02 62.96 
30 587685 4177975 68.49 38.98 329.40 101.05 14.58 31.65 
31 584283 4181119 156.53 209.93 439.20 179.65 36.94 96.69 
32 584510 4178599 110.35 94.97 397.72 117.09 30.13 60.56 
33 583281 4176378 1092.30 539.83 1427.40 573.44 140.94 492.05 
34 585718 4177555 140.58 99.97 459.33 121.90 23.33 106.32 
35 588862 4179008 71.68 34.98 368.44 85.01 12.64 60.56 
36 586990 4182722 108.02 154.94 207.40 96.24 37.91 55.74 
37 584355 4182095 119.65 144.94 234.24 97.84 34.02 55.74 
38 584953 4182683 166.35 244.92 373.32 187.67 30.77 94.28 
39 582357 4185585 97.56 1839.47 387.96 673.68 213.84 202.67 
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Fig. 6. Sampling point in study area. 

 
Fig. 7. Piper Diagram for samples. 

 
       The commonly used descriptive parameters were calculated (Table 2 and 3), Histograms of Chloride 

density with a normal distribution curve are shown in Fig. 8. The raw data have a long tail towards higher Chloride 
density values (Fig. 8a). Other studies have also shown that environmental variables are often skewed from a 
normal distribution towards positive values because of the relatively smaller percentage of high values (Chang et 
al., 2003(. The Ln transformed data show a normal distribution (Fig. 8b(. This is confirmed by the K–S p value (> 
0.05). Therefore, transformed data were used for geostatistical analysis. 
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Table 2 
Descriptive Parameters of Chloride before Normalization 

Min Mean Max Skewness Kurtosis Kolmogorov-
Smirnov 

Shapiro-Wilk 

34.98 627.10 3039.058 1.746 3.188 0.000 0.000 

 
Table 3 
Descriptive Parameters of Chloride after Normalization. 

Min Mean Max Skewness Kurtosis Kolmogorov-
Smirnov 

Shapiro-Wilk 

1.01 5.38 13 0.046 0.729 0.2 0.498 

 

Fig. 9. Correlation between Cl


and other chosen parameters and elements. 
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       As Figure 9 shows, the correlation between Cl


 and EC and its correlation with Ca


 is 0.9542 and 

0.9461 respectively. Also Mg


has a correlation about 0.94. So these 3 cases were chosen as covariant in the 

prediction of Cl


distribution with lognormal ordinary cokriging (LnOCK). Whereas Na


 correlated about 0.747 

with Cl


. Upon to Hounslow (1995), if chloride be more than Sodium, then there is an analytical error or the 
composition of the water is derived from brines where reverse ion exchange or reverse natural softening has 
occurred. In the latter case, one would expect the dissolved solid content of the water to be high- at least over 500 

Mg/lit. Also if Ca be more than So4 indicates Ca


 source other than gypsum, such as Calcite/Dolomite or silicates 

(Figure 10). Considering the geology of study area reveals that Ca


 sources is mainly derived from Travertine 

member. Figure 11 also shows the distribution of Ca


 in the study area.  

 
Fig. 10. Origin of Ca and Na considering the Cl concentration (Hounslow. 1995). 

 

Fig. 11. Distribution of Ca


 in the study area. 
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       After using cokriging method for prediction, the results figure out in the study area map (Figures 12 to 14) 

and then their crossvalidation have computed (Figure 15). In third step Ca


 and EC have used together as 

covariates in lognormal ordinary cokriging (LnOCK), to increase the prediction of Cl


 distribution; result has shown 
that conjugating of these covariates had no positive effect on prediction (Figure 16, Table 4).  

 

Fig .12. Prediction Map of Cl


 concentration using Mg 


 as covariant. 

 

Fig. 13. Prediction Map of Cl


 concentration using EC as covariant. 
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Fig. 14. Prediction Map of Cl


 concentration using Ca


as covariant. 
 

Fig 15. Computed Cross Validation of Cl


concentration using EC, Ca


 and Mg


. 
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Table 4 

The Mean Error and RMSE Using EC, Ca


 and Mg


as Covariant. 

Covariant Semivariogram/crosscovariance trend Lag size Anisotropy MEAN ERROR RMSE 

Nothing Exponential second 385.70 yes 0.42 2.64 
Mg Exponential second 259.56 yes 0.22 1.38 
EC Exponential second 254.60 yes 0.23 1.42 
Ca Exponential second 412.68 yes 0.04 0.26 

 

 

 

Fig. 16. Computed Cross Validation and Prediction Map of Cl


 concentration conjugating EC, Ca


as 
covariates. 

Table 5 

The Mean Error and RMSE Conjugating EC and Ca


 as Covariant. 

Covariant Crosscovariance Trend Lag size Anisotropy MEAN ERROR RMSE 

Ca & EC Exponential second 259.65 yes 0.32 1.98 
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4. Conclusion 

The results of study revealed that in spatial distribution models based on geostatistic, lognormal ordinary 
cokriging (LnOCK) usually gives more reliable results than lognormal ordinary cokriging (LnOCK). Also outcomes of 
research have shown that when covariant has better correlation with unknown parameter, the Error of modelling 
could be lower. Although adding more data set as excess covariant reduces the model accuracy. Also current study 
revealed that in areas with less dense sampling, using of spatial prediction via geostatistics can be beneficial for 
distribution unknown variables estimation, gives an accurate wisdom of the study area. Derived maps by 
geostatistic finally depicted that, Chloride concentration rises from the South- East to North- West that maybe 
proves the infiltration of Chloride from the salt pan next to the Aquifer and also Calcium derives from the 
Travertine member and replaces with Sodium.   
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