Genetic pheochromocytoma/paraganglioma– A review

F.B. Pambinezhuth
National Diabetes and Endocrine center –Royal hospital, Muscat Oman.

*Corresponding author. National Diabetes and Endocrine center –Royal hospital, Muscat Oman.

ARTICLE INFO

Article history,
Received 27 October 2013
Accepted 11 November 2013
Available online 30 November 2013

Keywords,
Pheochromocytoma
Paraganglioma
Germ line mutations
Familial syndromes

ABSTRACT

The prevalence of pheochromocytoma in hypertensive patients is less than 1%. Most PHEOs occur sporadically, but a substantial proportion may be associated with germ line mutations of genes predisposing to the development of familial syndromes like multiple endocrine neoplasia (MEN), Von-Hippel Lindau (VHL) disease, neurofibromatosis type 1 (NF-1), familial paraganglioma/pheochromocytoma (PGL/PHEO) related to genetic mutation encoding the mitochondrial protein succinate dehydrogenase sub units (SDH-BCD). Screening for genetic mutation is imperative as it may add more on management and surveillance of this patients. This review summarize the relevant data related to this fascinating clinical entity.

© 2013 Sjournals. All rights reserved.

1. Introduction

Pheochromocytomas are catecholamine secreting tumors arising from chromaffin cells of adrenal medulla. However, 9-23% of this tumors originate from extra adrenal sympathetic or parasympathetic ganglions, referred as extradrenal PHEOs or PGLs. With the advent of genetic testing, it is clear that about 30% of cases develop due to germ line mutations in any of the susceptible genes (Neumann et al., 2002, Amar et al., 2005, Pacak et al., 2007). Even patients with apparently sporadic PHEOs may harbor germ line mutations. Patients with this familial syndromes are prone to develop other tumors associated with specific mutations. Beyond a single tumor, expression of this mutations may explore a broader clinical picture.
2. Genetic pheos/pgls

The common genetic mutations related to Pheochromocytomas and paragangliomas are RET protooncogene, VHL, Neurofibromin and SDH sub units - BDC, responsible for the formation of multiple endocrine neoplasia (MEN-2), Von-Hippel Lindau disease (VHL), neurofibromatosis (NaF-1) and familial pheochromocytomas and paragangliomas respectively. Their clinical, biochemical picture, tumor location and susceptibility to develop malignant lesions are shown in the Table 1.

Table 1
Genetic syndromes and their characteristics.

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Mutated gene</th>
<th>Type of tumor</th>
<th>Main secretion</th>
<th>malignancy</th>
<th>bilateral</th>
<th>Extra adrenal</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEN -2A and 2B</td>
<td>RET proto oncogene</td>
<td>Pheo40-50%, PGL-rare</td>
<td>Metanephrine</td>
<td>3%-5%</td>
<td>++</td>
<td>_</td>
</tr>
<tr>
<td>VHL</td>
<td>VHL gene</td>
<td>Pheos-10-20%, PGL-5%</td>
<td>Normetanephrine</td>
<td><5%</td>
<td>+++</td>
<td>+/-</td>
</tr>
<tr>
<td>NF-1 Familial PHEOs/PGLS</td>
<td>Neurofibromin</td>
<td>Pheo<5% Head&neck</td>
<td>Metanephine/normetanephine</td>
<td>10%</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>SDHD</td>
<td>PGL Abdominal PGL</td>
<td></td>
<td>Parasympathetic</td>
<td>Rare</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>SDHB</td>
<td>Head&neck</td>
<td></td>
<td><5% catcholamine</td>
<td>40%</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>SDHC</td>
<td>PGL PGL</td>
<td></td>
<td>Normetanephine</td>
<td>Rare</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>SDHAF2</td>
<td>Head & neck PGL</td>
<td></td>
<td>Parasympathetic</td>
<td>rare</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>Head & neck PGL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1. Associated components

Patients with MEN-2A are prone to develop medullary thyroid cancer (MTC- 95%) and hyperparathyroidism(35%) and MEN-2B group may develop aggressive MTC, mucosal neuromas, thick corneal nerves, intestinal ganglioneuromas and marfanoid habitus (Gagel et al., 1988, Brandi et al., 2001). Family members of this kindred should have genetic testing for RET mutation, and if found to carry mutation should offer prophylactic thyroidectomy. Carriers of VHL 2 mutation are predisposed to develop multicentric haemangioblastoma in the retina, cerebellum and spine, clear renal cell carcinoma, cystic lesions in the pancreas, kidney, cystadnomas in the epididymis and broad ligament, nonfunctional neuroendocrine tumors of pancreas and endolymphatic sacs. In patients with VHL, the major risk of life is the development of renal cell cancer, and even simple renal cyst is considered as premalignant and their removal is advisable. Based on its clinical expression, VHL disease is subdivided into 4 subtypes (Koch et al 2002, Hes et al., 2003) – depicted in Table 2.

Table 2
VHL Mutations and their characteristics.

<table>
<thead>
<tr>
<th>Type 1-VHL</th>
<th>Loss of VHL function– prone to develop hemangiblastoma/renal cell tumor, not at risk for PHEOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 VHL</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Prone to develop PHEO and hemangiblastoma, low risk for renal cell cancer</td>
</tr>
<tr>
<td>B</td>
<td>PHEO and hemangiblastoma, high risk for renal cell cancer</td>
</tr>
<tr>
<td>C</td>
<td>Only PHEO, no hemangiblastoma or renal cell cancer</td>
</tr>
</tbody>
</table>
Neurofibromatosis is presented with café-au-lait spots, cutaneous neurofibroma, optic glioma, axillary or inguinal freckles, dysplasia of the sphenoid bone (Gutmann et al. 1997). Familial PHEO/PGL is caused by the mutation in three of the four genes encoding succinate dehydrogenase subunits: SDHB-PGL4, SDHD-PGL1, and SDHC-PGL3. They have a proclivity to develop sympathetic or parasympathetic tumors extending from neck to pelvis with or without adrenal pheochromocytoma. SDHD mutation is characterized by head and neck parasympathetic paraganglioma (glomus tumors) and less frequently with sympathetic PGLs and PHEOs (Baysal et al. 2002, Benn et al. 2006). Patients with SDHB is mainly come with sympathetic extra adrenal PHEOs (Brouwers et al., 2006, Timen et al., 2007) in the abdomen, mediastinum or pelvis and more likely to be malignant (Neumann et al., 2007). They are at increased risk for renal cell carcinoma and papillary thyroid cancer (Schiavi et al., 2005). SDHC mutation is characterized by benign head and neck parasympathetic PGLs (Schiavi et al., 2005).

2.2.1. Genetic testing

Despite a high figure of unsuspected germ line mutations, genetic testing is restricted to patients who fulfill certain clinical criteria (Gimenez-Roquero et al., 2006, Pacak et al., 2007). It is strongly recommended for extra adrenal PHEOs, multicentric, malignant tumors, family history of such tumors, clinical presentation with other tumor components and presentation at a younger age (<50 years). All genetic PHEOs are inherited in an autosomal dominant manner. In kindred with SDHD mutation only paternal transmission of mutant gene cause susceptibility to PHEOs and PGLs and this phenomenon is known as maternal imprinting (Baysal et al. 2002). The life time risk of developing PGLs in patients with this familial syndromes is around 1000% by the age of 70 years (Benn et al., 2006). The genetic PHEO patients require life time surveillance for tumor recurrence and the development of other tumor components.

2.2.2. Diagnosis

Although, a diverse clinical manifestation can be seen based on the variations of hormone secretion, generally they present with paroxysmal or sustained headache, palpitation, hypertension etc. Parasympathetic tumors usually come with local mass effect, cranial nerve dysfunction and only a small proportion (5%) is hyper functional. Biochemical diagnosis is made by raised plasma or 24 urine metanephrines level. A high level of chromogranin A (CgA) in patients with normal renal function, further support the diagnosis (Herbomez et al., 2007). Anatomical localization of the tumor by CT/MRI, followed by functional imaging using 123iodine MIBG scan, PET scan or octreotide scan is required. Metastatic and malignant tumors are better detected by octreoretide scan compared with MIBG scan (87 vs 57%) (Vander Harst et al., 2001), possibly due to decreased expression of cell membrane nor epinephrine transporter.

2.2.3. Management

Definitive management is surgery. Patient should be prepared properly before surgery. Adequate control of hypertension using Alfa and beta receptor blockers, hydration including blood transfusion are important preoperative management steps (Takahashi et al 1985). As this tumor can recur, a long term follow up is required especially with genetic PHEOs /PGLs (Amar et al. 2005). Patients with genetic PHEOs should be appropriately screened for associated tumor components and malignancy. Plasma or 24 urine metanephrine and chromogranin A are used to screened for any tumor recurrence.

3. Conclusion

It is well known that, a significant percentage of patients with sporadic PHEOs and PGLs may have germ line mutation, predisposing to the development of a more generalized disease. It is worth doing genetic screening in selected patients as it may reveal a broad disease spectrum. A Multidisciplinary team approach, involving clinical geneticist, interventional radiologist, nuclear medicine, endocrine and oncology surgeon, oncologist and last but not least, endocrinologist is appropriate. The challenge is to have a tangible genetic testing, combination with appropriate imaging to confirm the presence of lesion and its secretory profile.

References
Vander, H.E., deHerder, W.W., 2001. (123I) metaiodobezyl-guadine and (111 In) octreotide uptake in benign and malignant pheochromocytoma JCEM., 86 685-693.