Cover Image

Ecological succession of plankton in a biofloc system with molasses as carbon source

Hernández Estrada Roberto, Rodríguez Martínez Andrea, Ruíz Martínez Osiris, Monroy Dosta María del Carmen

Abstract


The objective of this research was to establish the ecological succession of the planktonic groups developed in a biofloc system for the cultivation of tilapia. For this purpose, 20 fish of 7±2 cm long and an average weight of 8.6 g were introduced in 200 liters’ cylinders. Every day they were fed commercial food with 40% protein. The diet was calculated considering 10% of the body mass and molasses was added to promote the development of heterotrophic bacteria maintaining a C/N ratio of 15:1. Diversity and abundance of the organisms associated with the bioflocs was analyzed during 10 weeks by direct observation under an optical microscope (Olympus CBX50) connected to an image processing software. At the same time, physicochemical parameters (pH, nitrite, nitrates and ammonium) were measured using a HANNA Aquaculture Photometer auto analyzer (HI83203). Results showed a marked succession of planktonic organisms as the system matured, with the occurrence of facilitation, tolerance and inhibition mechanisms among the groups. Chlorophytes and cyanobacteria were among the facilitator species responsible for the transformation of nitrogen compounds into assimilable forms available for the development of other organisms with more complex structures, so that -throughout the experiment- ciliates and other protozoa appeared quickly, but with variations both in diversity and abundance among the groups. Later on, rotifers, one of the most conspicuous groups, increased represented by the genera Lepadella, Phillodina, Lecane and Habrotrocha. The last group to appear was that of nematodes (sixth week), which indicates that the system was already mature by providing sufficient carbohydrates for the formation of the collagen structures of this group.

References


Abreu, P.C., Ballester, E.L.C., Odebrecht, C., Wasielesky, W.J., Cavalli, R.O., Granéli, W., Anésio, A.M., 2007. Importance of biofilm as food source for shrimp (Farfantepenaeus paulensis) evaluated by stable isotopes (d13C and d15N). J. Exp. Mar. Biol. Ecol., 347, 88-96.

Aladro-Lubel, M., 2009. Manual de protozoarios. Facultad de Ciencias, Universidad Autónoma de México, México, 123p.

Avnimelech, Y., Kochba, M., 2009. Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture, 287, 163-168.

Ballester, E.L.C., Abreu, P.C., Cavalli, R.O., Emerenciano, M., Abreu, L., Wasielesky, W., 2010. E¡ect of practical diets with di¡erent protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial £ocs intensive system. Aquaculture Nutr., 16, 163-172.

Becerril-Cortés, D., María del Carmen, M.D., Mauricio Gustavo, C.E., Germán, C.M., Kathia, C.M., Ramón de Lara-Andrad, E., 2017. Nutritional importance for aquaculture and ecological function of microorganisms that make up Biofloc, a review. Int. J. Aquat. Sci., 8(2), 69-77.

Bentzon-Tilia, M., AU-Sonnenschein, AU-Gram, E.C., Lone, T.I., 2016. Monitoring and managing microbes in aquaculture - Towards a sustainable industry. JO. Microb. Biotechnol., 9(5), 578-584.

Betancur González, E.M., Carlos Arturo, D.R., Luz Adriana, G., 2016. Revista lasallista de investigación. 13(2), 163-177.

Cabello, F.C., Godfrey, H.P., Tomova, A., Ivanova, L., Dölz, H., Millanao, A., Buschmann, A.H., 2013. Antimicrobial use in aquaculture re‐examined: its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol., 15, 1917-1942.

Castro-Mejía, G., De Lara Andrade, R., Monroy-Dosta, M.C., Maya-Gutiérrez, S., Castro-Mejía, J., Jiménez-Pacheco, F., 2017. Revista Digital E-BIOS. 1(13), 33-42.

Colina, M., Calliari, D., Carballo, C., Kruk, C., 2016. A trait-based approach to summarize zooplankton-phytoplankton interactions in freshwaters. Hydrobiologia, 767, 221-233.

Collazos-Lasso, L.F., Arias-Castellanos, J.A., 2015. Fundamentos de la tecnología biofloc (BFT). Una alternativa para la piscicultura en Colombia: Una revisión. Orinoquia, 19(1), 77-86.

Crab, R., Kochva, M., Verstraete, W., Avnimelech, Y., 2009. Bio-flocs technology application in over-wintering of Tilapia. Aquacult. Eng., 40, 105-112.

De Lara, A.R., 2005. Panagrellus redivirus (Nematoda) cultivado en medio de avena enriquecido con Spirulina sp. para probar el crecimiento de la población y calidad nutritiva. Tesis de maestría, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, 72p.

Emerenciano, M., Ballester, E.L., Cavalli, R.O., Wasielesky, W., 2011. Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis: Growth performance, floc composition and salinity stress tolerance. Aquaculture Int., 19(5), 891-901.

Lampert, W., Sommer, U., 2007. Limnoecology. The Ecology of Lakes and Streams. 2nd ed. Oxford University press, USA.

Monroy-Dosta, M.C., Andrade, R.L., Mejía, J.C., Mejia, G.C., Emerenciano, M.C., 2013. Composición y abundancia de comunidades microbianas asociadas al biofloc en un cultivo de tilapia. Revista de Biología Marina y Oceanografía, 48(3), 512.

Moss, B., 2001. Ecology of freshwater. Okford, Blackwell, 557p.

Pérez-Uz, B., Arregui, L., Calvo, P., Salvadó, H., Fernández, N., Rodriguez, E., y Serrano, S., 2009. Parámetros biológicos relacionados con la eliminación de nitrógeno en fangos activos. Análisis multivariante en el desarrollo de un índice biológico en estos sistemas.

Walker, L.R., 2005. Margalef y la sucesión ecológica. Revista Ecosistemas, 14(1), 66-78.


Full Text: PDF

Refbacks

  • There are currently no refbacks.